missoNet: Joint Sparse Regression & Network Learning with Missing Data

Simultaneously estimates sparse regression coefficients and response network structure in multivariate models with missing data. Unlike traditional approaches requiring imputation, handles missingness natively through unbiased estimating equations (MCAR/MAR compatible). Employs dual L1 regularization with automated selection via cross-validation or information criteria. Includes parallel computation, warm starts, adaptive grids, publication-ready visualizations, and prediction methods. Ideal for genomics, neuroimaging, and multi-trait studies with incomplete high-dimensional outcomes. See Zeng et al. (2025) <doi:10.48550/arXiv.2507.05990>.

Version: 1.5.1
Depends: R (≥ 3.6.0)
Imports: circlize (≥ 0.4.15), ComplexHeatmap, glassoFast (≥ 1.0.1), graphics, grid, mvtnorm (≥ 1.2.3), pbapply (≥ 1.7.2), Rcpp (≥ 1.0.9), scatterplot3d (≥ 0.3.44), stats, utils
LinkingTo: Rcpp, RcppArmadillo
Published: 2025年09月02日
Author: Yixiao Zeng [aut, cre, cph], Celia Greenwood [ths, aut]
Maintainer: Yixiao Zeng <yixiao.zeng at mail.mcgill.ca>
License: GPL-2
NeedsCompilation: yes
Materials: README, NEWS
CRAN checks: missoNet results

Documentation:

Reference manual: missoNet.html , missoNet.pdf

Downloads:

Package source: missoNet_1.5.1.tar.gz
Windows binaries: r-devel: missoNet_1.5.1.zip, r-release: missoNet_1.5.1.zip, r-oldrel: missoNet_1.5.1.zip
macOS binaries: r-release (arm64): missoNet_1.5.1.tgz, r-oldrel (arm64): missoNet_1.5.1.tgz, r-release (x86_64): missoNet_1.5.1.tgz, r-oldrel (x86_64): missoNet_1.5.1.tgz
Old sources: missoNet archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=missoNet to link to this page.

AltStyle によって変換されたページ (->オリジナル) /