grf: Generalized Random Forests
Forest-based statistical estimation and inference.
GRF provides non-parametric methods for heterogeneous treatment effects estimation
(optionally using right-censored outcomes, multiple treatment arms or outcomes, or instrumental variables),
as well as least-squares regression, quantile regression, and survival regression,
all with support for missing covariates.
Version:
2.5.0
Depends:
R (≥ 3.5.0)
Published:
2025年10月09日
Author:
Julie Tibshirani [aut],
Susan Athey [aut],
Rina Friedberg [ctb],
Vitor Hadad [ctb],
David Hirshberg [ctb],
Luke Miner [ctb],
Erik Sverdrup [aut, cre],
Stefan Wager [aut],
Marvin Wright [ctb]
Maintainer:
Erik Sverdrup <erik.sverdrup at monash.edu>
NeedsCompilation:
yes
SystemRequirements:
GNU make
Documentation:
Downloads:
Reverse dependencies:
Reverse imports:
aggTrees,
causalDT,
causalQual,
causalweight,
cohetsurr,
cramR,
EpiForsk,
evalITR,
htetree,
longsurr,
OutcomeWeights,
policytree,
qeML,
roseRF
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=grf
to link to this page.