ltcmt: Analysing Line x Tester data containing only crosses for multiple traits.

The function ltcmt conducts Line x Tester analysis for multiple traits when the data contains only crosses. The experimental design may be RCBD or Alpha lattice design.

Example: Analyzing Line x Tester data (crosses) laid out in Alpha Lattice design.

 # Load the package
 library(gpbStat)
 
 #Load the dataset
 data("alphaltcmt")
 
 # View the structure of dataframe. 
 str(alphaltcmt)
 #> spc_tbl_ [60 ×ばつ 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 #> $ replication: chr [1:60] "r1" "r3" "r2" "r4" ...
 #> $ block : chr [1:60] "b2" "b2" "b4" "b5" ...
 #> $ line : chr [1:60] "DIL 2" "DIL 2" "DIL 2" "DIL 2" ...
 #> $ tester : chr [1:60] "DIL-101" "DIL-101" "DIL-101" "DIL-101" ...
 #> $ hsw : num [1:60] 25.7 24.5 23.7 25.1 23 ...
 #> $ sh : num [1:60] 81.7 83.3 86 84.6 85.5 ...
 #> $ gy : num [1:60] 25.9 41 65.7 47.3 30.8 ...
 #> - attr(*, "spec")=List of 3
 #> ..$ cols :List of 7
 #> .. ..$ replication: list()
 #> .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
 #> .. ..$ block : list()
 #> .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
 #> .. ..$ line : list()
 #> .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
 #> .. ..$ tester : list()
 #> .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
 #> .. ..$ hsw : list()
 #> .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
 #> .. ..$ sh : list()
 #> .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
 #> .. ..$ gy : list()
 #> .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
 #> ..$ default: list()
 #> .. ..- attr(*, "class")= chr [1:2] "collector_guess" "collector"
 #> ..$ delim : chr ","
 #> ..- attr(*, "class")= chr "col_spec"
 #> - attr(*, "problems")=<externalptr>
 
 # Conduct Line x Tester analysis
result = ltcmt(alphaltcmt, replication, line, tester, alphaltcmt[,5:7], block)
 #> 
 #> Analysis of Line x Tester for Multiple traits
 #> Warning in sqrt(x): NaNs produced
 
 #> Warning in sqrt(x): NaNs produced
 
 #> Warning in sqrt(x): NaNs produced
 
 #> Warning in sqrt(x): NaNs produced
 
 #> Warning in sqrt(x): NaNs produced
 
 #> Warning in sqrt(x): NaNs produced
 
 # View the output
result
 #> $Mean
 #> $Mean$hsw
 #> Tester
 #> Line DIL 102 DIL-101 DIL-103
 #> DIL 2 23.1800 24.7525 23.8525
 #> DIL 3 25.0975 22.1300 25.4675
 #> DIL 5 23.8625 24.4075 22.9050
 #> DIL-1 24.3900 24.2800 26.4325
 #> DIL-4 26.5250 25.3625 26.3225
 #> 
 #> $Mean$sh
 #> Tester
 #> Line DIL 102 DIL-101 DIL-103
 #> DIL 2 84.6225 83.8950 83.7725
 #> DIL 3 84.4600 83.6100 83.0450
 #> DIL 5 82.5875 83.0425 84.8300
 #> DIL-1 83.8700 82.9375 84.2025
 #> DIL-4 84.3250 84.2775 81.8175
 #> 
 #> $Mean$gy
 #> Tester
 #> Line DIL 102 DIL-101 DIL-103
 #> DIL 2 45.3125 44.9575 47.3975
 #> DIL 3 54.7700 46.0625 55.0550
 #> DIL 5 53.5300 58.2675 53.5525
 #> DIL-1 48.8625 54.2675 44.7525
 #> DIL-4 52.1400 60.5650 53.7975
 #> 
 #> 
 #> $ANOVA
 #> $ANOVA$hsw
 #> Df Sum Sq Mean Sq F value Pr(>F)
 #> Replication 3 123.534952 41.178317 5.2008236 0.006007676
 #> Blocks within Replication 16 159.578141 9.973634 1.2596705 0.292005429
 #> Crosses 14 95.647543 6.831967 0.8628778 0.602918614
 #> Lines 4 44.421693 11.105423 1.0220298 0.406231362
 #> Testers 2 6.558103 3.279052 0.3017705 0.740992561
 #> Lines X Testers 8 44.667747 5.583468 0.5138454 0.839635289
 #> Error 26 205.858982 7.917653 NA NA
 #> Total 59 584.619618 NA NA NA
 #> 
 #> $ANOVA$sh
 #> Df Sum Sq Mean Sq F value Pr(>F)
 #> Replication 3 47.847660 15.9492200 5.5792805 0.004311049
 #> Blocks within Replication 16 61.895494 3.8684684 1.3532492 0.239549969
 #> Crosses 14 39.935293 2.8525210 0.9978553 0.482967180
 #> Lines 4 3.050693 0.7626733 0.1864544 0.944255260
 #> Testers 2 2.468943 1.2344717 0.3017971 0.740973054
 #> Lines X Testers 8 34.415657 4.3019571 1.0517198 0.413116072
 #> Error 26 74.324946 2.8586518 NA NA
 #> Total 59 224.003393 NA NA NA
 #> 
 #> $ANOVA$gy
 #> Df Sum Sq Mean Sq F value Pr(>F)
 #> Replication 3 3171.01367 1057.00456 7.6631523 0.0007893935
 #> Blocks within Replication 16 2338.12660 146.13291 1.0594455 0.4352040161
 #> Crosses 14 1411.65982 100.83284 0.7310257 0.7261397075
 #> Lines 4 787.60961 196.90240 0.9741847 0.4310920496
 #> Testers 2 48.49009 24.24505 0.1199536 0.8872442280
 #> Lines X Testers 8 575.56012 71.94502 0.3559517 0.9380005166
 #> Error 26 3586.26808 137.93339 NA NA
 #> Total 59 10507.06817 NA NA NA
 #> 
 #> 
 #> $GCA.Line
 #> hsw sh gy
 #> DIL 2 -0.6695000 0.41033333 -5.6635000
 #> DIL 3 -0.3661667 0.01866667 0.4098333
 #> DIL 5 -0.8728333 -0.19966667 3.5640000
 #> DIL-1 0.4363333 -0.01633333 -2.2585000
 #> DIL-4 1.4721667 -0.21300000 3.9481667
 #> 
 #> $GCA.Tester
 #> hsw sh gy
 #> DIL 102 0.01316667 0.2866667 -0.6296667
 #> DIL-101 -0.41133333 -0.1338333 1.2713333
 #> DIL-103 0.39816667 -0.1528333 -0.6416667
 #> 
 #> $SCA
 #> $SCA$hsw
 #> Tester
 #> Line DIL 102 DIL-101 DIL-103
 #> DIL 2 -0.7615000 1.2355000 -0.4740000
 #> DIL 3 0.8526667 -1.6903333 0.8376667
 #> DIL 5 0.1243333 1.0938333 -1.2181667
 #> DIL-1 -0.6573333 -0.3428333 1.0001667
 #> DIL-4 0.4418333 -0.2961667 -0.1456667
 #> 
 #> $SCA$sh
 #> Tester
 #> Line DIL 102 DIL-101 DIL-103
 #> DIL 2 0.23916667 -0.06783333 -0.1713333
 #> DIL 3 0.46833333 0.03883333 -0.5071667
 #> DIL 5 -1.18583333 -0.31033333 1.4961667
 #> DIL-1 -0.08666667 -0.59866667 0.6853333
 #> DIL-4 0.56500000 0.93800000 -1.5030000
 #> 
 #> $SCA$gy
 #> Tester
 #> Line DIL 102 DIL-101 DIL-103
 #> DIL 2 0.053000 -2.203000 2.150000
 #> DIL 3 3.437167 -7.171333 3.734167
 #> DIL 5 -0.957000 1.879500 -0.922500
 #> DIL-1 0.198000 3.702000 -3.900000
 #> DIL-4 -2.731167 3.792833 -1.061667
 #> 
 #> 
 #> $CV
 #> hsw sh gy 
 #> 11.439351 2.020348 22.781566 
 #> 
 #> $Genetic.Variance.Covariance.
 #> Phenotypic Variance Genotypic Variance Environmental Variance
 #> hsw -0.6689343 -8.586587 7.917653
 #> sh -0.4155230 -3.274175 2.858652
 #> gy -101.1095400 -239.042928 137.933388
 #> Phenotypic coefficient of Variation Genotypic coefficient of Variation
 #> hsw NaN NaN
 #> sh NaN NaN
 #> gy NaN NaN
 #> Environmental coefficient of Variation Broad sense heritability
 #> hsw 11.439351 12.836220
 #> sh 2.020348 7.879648
 #> gy 22.781566 2.364198
 #> 
 #> $Std.Error
 #> S.E. gca for line S.E. gca for tester S.E. sca effect S.E. (gi - gj)line
 #> hsw 0.8122835 0.6291921 1.4069162 1.1487423
 #> sh 0.4880789 0.3780643 0.8453774 0.6902478
 #> gy 3.3903464 2.6261511 5.8722523 4.7946739
 #> S.E. (gi - gj)tester S.E. (sij - skl)tester
 #> hsw 0.8898120 1.989680
 #> sh 0.5346636 1.195544
 #> gy 3.7139384 8.304619
 #> 
 #> $C.D.
 #> C.D. gca for line C.D. gca for tester C.D. sca effect C.D. (gi - gj)line
 #> hsw 1.669673 1.2933228 2.891958 2.361274
 #> sh 1.003260 0.7771222 1.737698 1.418825
 #> gy 6.968957 5.3981308 12.070587 9.855593
 #> C.D. (gi - gj)tester C.D. (sij - skl)tester
 #> hsw 1.829035 4.089846
 #> sh 1.099017 2.457476
 #> gy 7.634110 17.070388
 #> 
 #> $Add.Dom.Var
 #> Cov H.S. (line) Cov H.S. (tester) Cov H.S. (average) Cov F.S. (average)
 #> hsw 0.4601629 -0.1152208 0.03310414 -0.3374874
 #> sh -0.2949403 -0.1533743 -0.03843202 -0.1641164
 #> gy 10.4131155 -2.3849984 0.76596517 -10.5696184
 #> Addittive Variance(F=0) Addittive Variance(F=1) Dominance Variance(F=0)
 #> hsw 0.1324166 0.06620828 -1.1670924
 #> sh -0.1537281 -0.07686404 0.7216527
 #> gy 3.0638607 1.53193033 -32.9941861
 #> Dominance Variance(F=1)
 #> hsw -0.5835462
 #> sh 0.3608263
 #> gy -16.4970931
 #> 
 #> $Contribution.of.Line.Tester
 #> Lines Tester Line x Tester
 #> hsw 46.443110 6.856531 46.70036
 #> sh 7.639091 6.182359 86.17855
 #> gy 55.793159 3.434970 40.77187

Example: Analyzing Line x Tester data (crosses) laid out in RCBD.

 # Load the package
 library(gpbStat)
 
 #Load the dataset
 data("rcbdltcmt")
 
 # View the structure of dataframe. 
 str(rcbdltc)
 #> tibble [60 ×ばつ 4] (S3: tbl_df/tbl/data.frame)
 #> $ replication: num [1:60] 1 2 3 4 1 2 3 4 1 2 ...
 #> $ line : num [1:60] 1 1 1 1 1 1 1 1 1 1 ...
 #> $ tester : num [1:60] 6 6 6 6 7 7 7 7 8 8 ...
 #> $ yield : num [1:60] 74.4 70.9 60.9 68 91.8 ...
 
 # Conduct Line x Tester analysis
result1 = ltcmt(rcbdltcmt, replication, line, tester, rcbdltcmt[,4:5])
 
 # View the output
result1
 #> $Mean
 #> $Mean$ph
 #> Tester
 #> Line DIL-101 DIL-102 DIL-103
 #> DIL 2 197.75 177.50 177.25
 #> DIL 4 202.00 169.80 188.00
 #> DIL- 3 183.25 172.00 171.25
 #> DIL-1 175.50 197.75 202.00
 #> DIL-5 168.40 188.25 184.65
 #> 
 #> $Mean$eh
 #> Tester
 #> Line DIL-101 DIL-102 DIL-103
 #> DIL 2 100.50 90.00 91.500
 #> DIL 4 97.25 79.50 95.500
 #> DIL- 3 88.00 81.00 80.000
 #> DIL-1 87.00 102.25 102.500
 #> DIL-5 72.25 71.45 80.675
 #> 
 #> 
 #> $ANOVA
 #> $ANOVA$ph
 #> Df Sum Sq Mean Sq F value Pr(>F)
 #> Replication 3 442.4927 147.4976 0.5028866 0.68235896
 #> Crosses 14 7885.4240 563.2446 1.9203581 0.05197320
 #> Lines 4 1816.0907 454.0227 1.6010303 0.19053280
 #> Testers 2 213.1320 106.5660 0.3757861 0.68888394
 #> Lines X Testers 8 5856.2013 732.0252 2.5813568 0.02068038
 #> Error 42 12318.6773 293.3018 NA NA
 #> Total 59 20646.5940 NA NA NA
 #> 
 #> $ANOVA$eh
 #> Df Sum Sq Mean Sq F value Pr(>F)
 #> Replication 3 162.4298 54.14328 0.6740871 5.727648e-01
 #> Crosses 14 5957.8783 425.56274 5.2982817 1.239227e-05
 #> Lines 4 3942.9167 985.72917 12.5449584 6.156545e-07
 #> Testers 2 302.4323 151.21617 1.9244642 1.577768e-01
 #> Lines X Testers 8 1712.5293 214.06617 2.7243296 1.541154e-02
 #> Error 42 3373.4777 80.32090 NA NA
 #> Total 59 9493.7858 NA NA NA
 #> 
 #> 
 #> $GCA.Line
 #> ph eh
 #> DIL 2 0.4766667 6.041667
 #> DIL 4 2.9100000 2.791667
 #> DIL- 3 -8.1900000 -4.958333
 #> DIL-1 8.0600000 9.291667
 #> DIL-5 -3.2566667 -13.166667
 #> 
 #> $GCA.Tester
 #> ph eh
 #> DIL-101 1.69 1.041667
 #> DIL-102 -2.63 -3.118333
 #> DIL-103 0.94 2.076667
 #> 
 #> $SCA
 #> $SCA$ph
 #> Tester
 #> Line DIL-101 DIL-102 DIL-103
 #> DIL 2 11.89333 -4.036667 -7.856667
 #> DIL 4 13.71000 -14.170000 0.460000
 #> DIL- 3 6.06000 -0.870000 -5.190000
 #> DIL-1 -17.94000 8.630000 9.310000
 #> DIL-5 -13.72333 10.446667 3.276667
 #> 
 #> $SCA$eh
 #> Tester
 #> Line DIL-101 DIL-102 DIL-103
 #> DIL 2 5.458333 -0.8816667 -4.576667
 #> DIL 4 5.458333 -8.1316667 2.673333
 #> DIL- 3 3.958333 1.1183333 -5.076667
 #> DIL-1 -11.291667 8.1183333 3.173333
 #> DIL-5 -3.583333 -0.2233333 3.806667
 #> 
 #> 
 #> $CV
 #> [1] 9.323348 10.189134
 #> 
 #> $Genetic.Variance.Covariance
 #> Phenotypic Variance Genotypic Variance Environmental Variance
 #> ph 397.2386 103.93675 293.3018
 #> eh 173.1758 92.85487 80.3209
 #> Phenotypic coefficient of Variation Genotypic coefficient of Variation
 #> ph 10.85026 5.550078
 #> eh 14.96120 10.955327
 #> Environmental coefficient of Variation Broad sense heritability
 #> ph 9.323348 0.2616482
 #> eh 10.189134 0.5361886
 #> 
 #> $Std.Error
 #> S.E. gca for line S.E. gca for tester S.E. sca effect S.E. (gi - gj)line
 #> ph 4.943867 3.829503 8.563029 6.991684
 #> eh 2.587162 2.004007 4.481096 3.658800
 #> S.E. (gi - gj)tester S.E. (sij - skl)tester
 #> ph 5.415735 12.109951
 #> eh 2.834094 6.337227
 #> 
 #> $C.D.
 #> C.D. gca for line C.D. gca for tester C.D. sca effect C.D. (gi - gj)line
 #> ph 9.892655 7.662817 17.134581 13.990327
 #> eh 5.176900 4.010009 8.966653 7.321242
 #> C.D. (gi - gj)tester C.D. (sij - skl)tester
 #> ph 10.836860 24.23196
 #> eh 5.671009 12.68076
 #> 
 #> $Add.Dom.Var
 #> Cov H.S. (line) Cov H.S. (tester) Cov H.S. (average) Cov F.S. (average)
 #> ph -23.16688 -31.27296 -4.475243 37.37585
 #> eh 64.30525 -3.14250 5.607864 88.76549
 #> Addittive Variance(F=0) Addittive Variance(F=1) Dominance Variance(F=0)
 #> ph -17.90097 -8.950486 219.36166
 #> eh 22.43145 11.215727 66.87263
 #> Dominance Variance(F=1)
 #> ph 109.68083
 #> eh 33.43632
 #> 
 #> $Contribution.of.Line.Tester
 #> Lines Tester Line x Tester
 #> ph 23.03098 2.702860 74.26616
 #> eh 66.17988 5.076175 28.74395

AltStyle によって変換されたページ (->オリジナル) /