ltc: Analysing Line x Tester data containing only crosses.

Nandan Patil

The function ltc conducts Line x Tester analysis when the data contains only crosses. The experimental design may be RCBD or Alpha lattice design.

Example: Analyzing Line x Tester data (crosses) laid out in Alpha Lattice design.

 # Load the package
 library(gpbStat)
 
 #Load the dataset
 data("alphaltc")
 
 # View the structure of dataframe. 
 str(alphaltc)
 #> 'data.frame': 60 obs. of 5 variables:
 #> $ replication: chr "r1" "r1" "r1" "r1" ...
 #> $ block : chr "b1" "b1" "b1" "b2" ...
 #> $ line : int 5 1 4 4 1 2 2 5 3 1 ...
 #> $ tester : int 7 8 8 6 7 7 6 6 8 6 ...
 #> $ yield : num 47.3 109.4 36.3 36.2 70.7 ...
 
 # Conduct Line x Tester analysis
result = ltc(alphaltc, replication, line, tester, yield, block)
 #> 
 #> Analysis of Line x Tester: yield
 
 # View the output
result
 #> $Means
 #> Testers
 #> Lines 6 7 8
 #> 1 86.47500 88.95833 89.55000
 #> 2 88.64667 55.48000 50.12667
 #> 3 51.19917 53.28417 36.91583
 #> 4 33.47500 34.29833 50.78417
 #> 5 45.30417 42.14500 49.98000
 #> 
 #> $`Overall ANOVA`
 #> Df Sum Sq Mean Sq F value Pr(>F)
 #> Replication 3 1586.4934 528.8311 3.1440495 4.213104e-02
 #> Crosses 14 23862.0199 1704.4300 10.1333150 3.161969e-07
 #> Blocks within Replication 16 2555.9198 159.7450 0.9497288 5.307851e-01
 #> Lines 4 18835.3119 4708.8280 24.8833344 6.536498e-11
 #> Testers 2 463.1458 231.5729 1.2237239 3.037332e-01
 #> Lines X Testers 8 4563.5622 570.4453 3.0144615 8.508293e-03
 #> Error 26 4373.2165 168.2006 NA NA
 #> Total 59 2561.2067 NA NA NA
 #> 
 #> $`Coefficient of Variation`
 #> [1] 22.70992
 #> 
 #> $`Genetic Variance`
 #> Genotypic Variance Phenotypic Variance Environmental Variance 
 #> 293.8997 462.1004 168.2006 
 #> 
 #> $`Genetic Variability `
 #> Phenotypic coefficient of Variation Genotypic coefficient of Variation 
 #> 37.6417608 30.0193557 
 #> Environmental coefficient of Variation <NA> 
 #> 22.7099195 0.6360084 
 #> 
 #> $`Line x Tester ANOVA`
 #> Df Sum Sq Mean Sq F value Pr(>F)
 #> Lines 4 18835.3119 4708.8280 24.883334 6.536498e-11
 #> Testers 2 463.1458 231.5729 1.223724 3.037332e-01
 #> Lines X Testers 8 4563.5622 570.4453 3.014461 8.508293e-03
 #> Error 26 4373.2165 168.2006 NA NA
 #> 
 #> $`GCA lines`
 #> 1 2 3 4 5 
 #> 31.220 7.643 -9.975 -17.589 -11.298 
 #> 
 #> $`GCA testers`
 #> 6 7 8 
 #> 3.912 -2.275 -1.637 
 #> 
 #> $`SCA crosses`
 #> Testers
 #> Lines 6 7 8
 #> 1 -5.765 2.906 2.859
 #> 2 19.984 -6.996 -12.988
 #> 3 0.154 8.426 -8.580
 #> 4 -9.956 -2.946 12.902
 #> 5 -4.417 -1.390 5.807
 #> 
 #> $`Proportional Contribution`
 #> Lines Tester Line x Tester 
 #> 78.934273 1.940933 19.124794 
 #> 
 #> $`GV Singh & Chaudhary`
 #> Cov H.S. (line) Cov H.S. (tester) 
 #> 344.86523 -16.94362 
 #> Cov H.S. (average) Cov F.S. (average) 
 #> 30.06778 262.35565 
 #> F = 0, Adittive genetic variance F = 1, Adittive genetic variance 
 #> 120.27111 60.13555 
 #> F = 0, Variance due to Dominance F = 1, Variance due to Dominance 
 #> 201.12232 15.84306 
 #> 
 #> $`Standard Errors`
 #> S.E. gca for line S.E. gca for tester S.E. sca effect 
 #> 3.743891 2.900005 6.484609 
 #> S.E. (gi - gj)line S.E. (gi - gj)tester S.E. (sij - skl)tester 
 #> 5.294661 4.101227 9.170622 
 #> 
 #> $`Critical differance`
 #> C.D. gca for line C.D. gca for tester C.D. sca effect 
 #> 7.695678 5.961047 13.329305 
 #> C.D. (gi - gj)line C.D. (gi - gj)tester C.D. (sij - skl)tester 
 #> 10.883332 8.430193 18.850484

Example: Analyzing Line x Tester data (crosses) laid out in RCBD.

 # Load the package
 library(gpbStat)
 
 #Load the dataset
 data("rcbdltc")
 
 # View the structure of dataframe. 
 str(rcbdltc)
 #> tibble [60 ×ばつ 4] (S3: tbl_df/tbl/data.frame)
 #> $ replication: num [1:60] 1 2 3 4 1 2 3 4 1 2 ...
 #> $ line : num [1:60] 1 1 1 1 1 1 1 1 1 1 ...
 #> $ tester : num [1:60] 6 6 6 6 7 7 7 7 8 8 ...
 #> $ yield : num [1:60] 74.4 70.9 60.9 68 91.8 ...
 
 # Conduct Line x Tester analysis
result1 = ltc(rcbdltc, replication, line, tester, yield)
 #> 
 #> Analysis of Line x Tester: yield
 
 # View the output
result1
 #> $Means
 #> Testers
 #> Lines 6 7 8
 #> 1 68.550 107.640 52.640
 #> 2 73.265 97.640 85.650
 #> 3 100.885 111.540 117.735
 #> 4 105.795 64.450 46.855
 #> 5 84.150 81.935 94.820
 #> 
 #> $`Overall ANOVA`
 #> Df Sum Sq Mean Sq F value Pr(>F)
 #> Replication 3 148.436 49.47866 0.509612 6.778194e-01
 #> Crosses 14 26199.654 1871.40388 19.274772 6.737492e-14
 #> Lines 4 10318.361 2579.59035 27.466791 1.421271e-11
 #> Testers 2 1718.926 859.46289 9.151332 4.626865e-04
 #> Lines X Testers 8 14162.367 1770.29589 18.849639 4.973396e-12
 #> Error 42 4077.815 97.09084 NA NA
 #> Total 59 30425.906 NA NA NA
 #> 
 #> $`Coefficient of Variation`
 #> [1] 11.42608
 #> 
 #> $`Genetic Variance`
 #> Genotypic Variance Phenotypic Variance Environmental Variance 
 #> 455.48131 552.57215 97.09084 
 #> 
 #> $`Genetic Variability `
 #> Phenotypic coefficient of Variation Genotypic coefficient of Variation 
 #> 27.2585365 24.7481829 
 #> Environmental coefficient of Variation <NA> 
 #> 11.4260778 0.8242929 
 #> 
 #> $`Line x Tester ANOVA`
 #> Df Sum Sq Mean Sq F value Pr(>F)
 #> Lines 4 10318.361 2579.59035 27.466791 1.421271e-11
 #> Testers 2 1718.926 859.46289 9.151332 4.626865e-04
 #> Lines X Testers 8 14162.367 1770.29589 18.849639 4.973396e-12
 #> Error 42 4077.815 97.09084 NA NA
 #> 
 #> $`GCA lines`
 #> 1 2 3 4 5 
 #> -9.960 -0.718 23.817 -13.870 0.732 
 #> 
 #> $`GCA testers`
 #> 6 7 8 
 #> 0.292 6.404 -6.697 
 #> 
 #> $`SCA crosses`
 #> Testers
 #> Lines 6 7 8
 #> 1 -8.019 24.959 -16.940
 #> 2 -12.546 5.717 6.828
 #> 3 -9.461 -4.918 14.378
 #> 4 33.136 -14.321 -18.815
 #> 5 -3.111 -11.438 14.548
 #> 
 #> $`Proportional Contribution`
 #> Lines Tester Line x Tester 
 #> 39.383578 6.560872 54.055550 
 #> 
 #> $`GV Singh & Chaudhary`
 #> Cov H.S. (line) Cov H.S. (tester) 
 #> 67.441205 -45.541650 
 #> Cov H.S. (average) Cov F.S. (average) 
 #> 2.680894 408.052454 
 #> F = 0, Adittive genetic variance F = 1, Adittive genetic variance 
 #> 10.723574 5.361787 
 #> F = 0, Variance due to Dominance F = 1, Variance due to Dominance 
 #> 836.602526 418.301263 
 #> 
 #> $`Standard Errors`
 #> S.E. gca for line S.E. gca for tester S.E. sca effect 
 #> 2.844451 2.203303 4.926734 
 #> S.E. (gi - gj)line S.E. (gi - gj)tester S.E. (sij - skl)tester 
 #> 4.022662 3.115940 6.967454 
 #> 
 #> $`Critical differance`
 #> C.D. gca for line C.D. gca for tester C.D. sca effect 
 #> 5.740335 4.446445 9.942552 
 #> C.D. (gi - gj)line C.D. (gi - gj)tester C.D. (sij - skl)tester 
 #> 8.118060 6.288222 14.060892

AltStyle によって変換されたページ (->オリジナル) /