deepregression: Fitting Deep Distributional Regression
Allows for the specification of semi-structured deep distributional regression models which are fitted in a neural network as
proposed by Ruegamer et al. (2023) <doi:10.18637/jss.v105.i02>.
Predictors can be modeled using structured (penalized) linear effects, structured non-linear effects or using an unstructured deep network model.
Version:
2.3.2
Imports:
mgcv,
dplyr,
R6,
reticulate (≥ 1.14),
Matrix,
magrittr,
tfruns, methods,
coro (≥ 1.0.3),
torchvision (≥ 0.5.1),
luz (≥ 0.4.0),
torch
Published:
2025年09月06日
Author:
David Ruegamer [aut, cre],
Christopher Marquardt [ctb],
Laetitia Frost [ctb],
Florian Pfisterer [ctb],
Philipp Baumann [ctb],
Chris Kolb [ctb],
Lucas Kook [ctb]
Maintainer:
David Ruegamer <david.ruegamer at gmail.com>
NeedsCompilation:
no
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=deepregression
to link to this page.