Simulation data (CNRM)
Description
Model cnrm-cm3; scenario 20c3m; variable pr. 24 h 2.8 degree x 2.8 degree for Holland at daily time step for period 1961年01月01日 to 2000年12月31日. Spatial Region: 1 grid cell at latitude: 51.625, longitude: 5.625
Usage
data(cnrm_nl)
Format
An object of class data.table (inherits from data.frame) with 14610 rows and 2 columns.
Source
Examples
str(cnrm_nl)
Estimate and print the temporal CSA plot
Description
The function csa computes (and by default plots) the aggregation curve of a given statistic in a single dimension, e.g., time.
Usage
csa(
x,
stat = "var",
std = TRUE,
threshold = 30,
plot = TRUE,
fast = FALSE,
chk = FALSE,
...
)
Arguments
x
A numeric vector.
stat
The statistic which will be estimated across the cross-scale continuum. Suitable options are:
"var" for variance,
"sd" for standard deviation,
"skew" for skewness,
"kurt" for kurtosis,
"l2" for L-scale,
"t2" for coefficient of L-variation,
"t3" for L-skewness,
"t4" for L-kurtosis.
std
logical. If TRUE (the default) the CSA plot is standardized to unit, i.e., zero mean and unit variance in the original time scale.
threshold
numeric. Sample size of the time series at the last aggregated scale.
plot
logical. If TRUE (the default) the CSA plot is printed.
fast
logical. If TRUE the CSA plot is estimated only in logarithmic scale; 1, 2, 3, ... , 10, 20, 30, ... , 100, 200, 300 etc.
chk
logical. If TRUE the number of cores is limited to 2.
...
log_x and log_y (default TRUE) for setting the axes of the CSA plot to logarithmic scale. The argument wn (default FALSE) is used to plot a line presenting the standardized variance of the white noise process. Therefore, it should be used only with stat = "var" and std = T.
Value
If plot = TRUE, the csa returns a list containing:
values: Matrix of the timeseries values for the selectedstatat eachscale.plot: Plot ofscaleversusstatas a ggplot object.
If plot = FALSE, then it returns only the matrix of the timeseries values for the selected stat at each scale.
References
Markonis et al., A cross-scale analysis framework for model/data comparison and integration, Geoscientific Model Development, Submitted.
Examples
## Not run:
csa(rnorm(1000), wn = TRUE)
data(gpm_nl, knmi_nl, rdr_nl, ncep_nl, cnrm_nl, gpm_events)
csa(knmi_nl$prcp, threshold = 10, fast = TRUE, chk = TRUE)
csa(gpm_nl$prcp, stat = "skew", std = FALSE, log_x = FALSE, log_y = FALSE,
smooth = TRUE, chk = TRUE)
gpm_skew <- csa(gpm_nl$prcp, stat = "skew", std = FALSE, log_x = FALSE, log_y = FALSE,
smooth = TRUE, plot = FALSE, chk = TRUE)
rdr_skew <- csa(rdr_nl$prcp, stat = "skew", std = FALSE, log_x = FALSE, log_y = FALSE,
smooth = TRUE, plot = FALSE, chk = TRUE)
csa.multiplot(rbind(data.frame(gpm_skew, dataset = "gpm"), data.frame(rdr_skew,
dataset = "rdr")), log_x = FALSE, log_y = FALSE, smooth = TRUE)
set_1 <- data.frame(csa(gpm_nl$prcp, plot = FALSE, fast = TRUE), dataset = "gpm")
set_2 <- data.frame(csa(rdr_nl$prcp, plot = FALSE, fast = TRUE), dataset = "radar")
set_3 <- data.frame(csa(knmi_nl$prcp, plot = FALSE, fast = TRUE), dataset = "station")
set_4 <- data.frame(csa(ncep_nl$prcp, plot = FALSE, fast = TRUE), dataset = "ncep")
set_5 <- data.frame(csa(cnrm_nl$prcp, plot = FALSE, fast = TRUE), dataset = "cnrm")
csa.multiplot(rbind(set_1, set_2, set_3, set_4, set_5))
## End(Not run)
Multiple CSA plotting
Description
Function for plotting multiple CSA curves in a single plot.
Usage
csa.multiplot(df, log_x = TRUE, log_y = TRUE, wn = FALSE, smooth = FALSE)
Arguments
df
A matrix or data.frame composed of three columns; scale for the temporal or spatial scale; value for the estimate of a given statistic (e.g., variance) at the given aggregated scale and variable for defining the corresponding dataset.
log_x
logical. If TRUE (the default) the x axis of the CSA plot is set to the logarithmic scale.
log_y
logical. If TRUE (the default) the y axis of the CSA plot is set to the logarithmic scale.
wn
logical. The argument wn (default FALSE) is used to plot a line presenting the standardized variance of the white noise process. Therefore, it should be used only with stat = "var" and std = T in the csa/csas functions.
smooth
logical. If TRUE (the default) the aggregation curves are smoothed (loess function).
Value
The CSA plot as a ggplot object.
Examples
aa <- rnorm(1000)
csa_aa <- data.frame(csa(aa, plot = FALSE, chk = TRUE), variable = 'wn')
bb <- as.numeric(arima.sim(n = 1000, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488))))
csa_bb <- data.frame(csa(bb, plot = FALSE, chk = TRUE), variable = 'arma(2, 2)')
csa.multiplot(rbind(csa_aa, csa_bb), wn = TRUE)
csa.multiplot(rbind(csa_aa, csa_bb), wn = TRUE, smooth = TRUE)
CSA curve plotting
Description
Function for plotting single CSA curves.
Usage
csa.plot(x, log_x = TRUE, log_y = TRUE, smooth = FALSE, wn = FALSE)
Arguments
x
A matrix or data.frame composed of two columns; scale for the temporal or spatial scale and value for the estimate of a given statistic (e.g., variance) at the given aggregated scale.
log_x
logical. If TRUE (the default) the x axis of the CSA plot is set to the logarithmic scale.
log_y
logical. If TRUE (the default) the y axis of the CSA plot is set to the logarithmic scale.
smooth
logical. If TRUE (the default) the aggregation curves are smoothed (loess function).
wn
logical. The argument wn (default FALSE) is used to plot a line presenting the standardized variance of the white noise process. Therefore, it should be used only with stat = "var" and std = T in the csa/csas functions.
Value
The CSA plot as a ggplot object.
Examples
## Not run:
aa <- rnorm(1000)
csa_aa <- csa(aa, chk = TRUE, plot = FALSE)
csa.plot(csa_aa)
## End(Not run)
Estimate and print the spatial CSA plot
Description
The function csa computes (and by default plots) the aggregation curve of a given statistic in two dimensions, e.g., space.
Usage
csas(
x,
stat = "var",
std = TRUE,
plot = TRUE,
threshold = 30,
chk = FALSE,
...
)
Arguments
x
A raster or brick object.
stat
The statistic which will be estimated across the cross-scale continuum. Suitable options are:
"var" for variance,
"sd" for standard deviation,
"skew" for skewness,
"kurt" for kurtosis,
"l2" for L-scale,
"t2" for coefficient of L-variation,
"t3" for L-skewness,
"t4" for L-kurtosis.
std
logical. If TRUE (the default) the CSA plot is standardized to unit, i.e., zero mean and unit variance in the original time scale.
plot
logical. If TRUE (the default) the CSA plot is printed
threshold
numeric. Sample size of the time series at the last aggregated scale.
chk
logical. If TRUE the number of cores is limited to 2.
...
log_x and log_y (default TRUE) for setting the axes of the CSA plot to logarithmic scale. The argument wn (default FALSE) is used to plot a line presenting the standardized variance of the white noise process. Therefore, it should be used only with stat = "var" and std = T.
Value
If plot = TRUE, the csa returns a list containing:
values: Matrix of the timeseries values for the selectedstatat eachscale.plot: Plot ofscaleversusstatas a ggplot object.
If plot = FALSE, then it returns only the matrix of the timeseries values for the selected stat at each scale.
References
Markonis et al., A cross-scale analysis framework for model/data comparison and integration, Geoscientific Model Development, Submitted.
Examples
## Not run:
data(gpm_events)
event_dates <- format(gpm_events[, unique(time)], "%d-%m-%Y")
gpm_events_brick <- dt.to.brick(gpm_events, var_name = "prcp")
plot(gpm_events_brick, col = rev(colorspace::sequential_hcl(40)),
main = event_dates)
csas(gpm_events_brick, chk = TRUE)
gpm_sp_scale <- csas(gpm_events_brick, plot = FALSE, chk = TRUE)
gpm_sp_scale[, variable := factor(variable, labels = event_dates)]
csa.multiplot(gpm_sp_scale, smooth = TRUE, log_x = FALSE, log_y = FALSE)
## End(Not run)
Transform data.table to brick
Description
The function dt.to.brick transforms a data.table object to brick (raster) format
Usage
dt.to.brick(dt, var_name)
Arguments
dt
The data table object to be transformed. It must be in a four-column format, with the coordinate columns named as "lat" & "lon" and time values as "time".
var_name
The name (chr) of the column in the data table (dt) which holds the values of the variable, e.g., "temperature".
Value
dt as a brick object.
Examples
## Not run:
aa <- expand.grid(lat = seq(40, 50, 1),
lon = seq(20, 30, 1),
time = seq(1900, 2000, 1))
aa$anomaly = rnorm(nrow(aa))
aa <- brick(dt.to.brick(aa, "anomaly"))
## End(Not run)
GPM-IMERG precipitation events over 10 mm/day
Description
GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree for Holland at daily time step for period 2014年03月12日 to 2018年05月15日. Spatial averaged over: latitude: 50.75, 53.55, longitude: 3.45, 7.15
Usage
data(gpm_events)
Format
An object of class data.table (inherits from data.frame) with 6612 rows and 6 columns.
Source
Examples
str(gpm_events)
Satellite data (GPM-IMERG)
Description
GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree for Holland at daily time step for period 2014年03月12日 to 2018年05月15日. Spatial averaged over: latitude: 50.75, 53.55, longitude: 3.45, 7.15
Usage
data(gpm_nl)
Format
An object of class data.table (inherits from data.frame) with 1526 rows and 2 columns.
Source
Examples
str(gpm_nl)
Station data (KNMI)
Description
240 homogenized stations 1951-now. 24 h point data for Holland at daily time step for period 1950年12月31日 to 2018年04月29日. Spatial Region: latitude: 50.78, 53.48, longitude: 3.4, 7.11
Usage
data(knmi_nl)
Format
An object of class data.table (inherits from data.frame) with 24592 rows and 2 columns.
Source
Examples
str(knmi_nl)
Reanalysis data (NCEP/NCAR)
Description
NMC reanalysis 24 h 2.5 degree x 2.5 degree for Holland at daily time step for period 1948年01月01日 to 2018年06月05日. Spatial Region: 1 grid cell at latitude: 52.38, longitude: 5.625
Usage
data(ncep_nl)
Format
An object of class data.table (inherits from data.frame) with 25601 rows and 2 columns.
Source
Examples
str(ncep_nl)
Radar data (KNMI)
Description
RAD_NL25_RAC_MFBS_24H_NC 24 h 1 km x 1 km for Holland at daily time step for period 2014年03月11日 to 2018年03月30日. Spatial Region: latitude: 50.76, 53.56, longitude: 3.37, 7.22
Usage
data(rdr_nl)
Format
An object of class data.table (inherits from data.frame) with 1472 rows and 2 columns.
Source
Examples
str(rdr_nl)