bayesImageS: Bayesian Methods for Image Segmentation using a Potts Model

Various algorithms for segmentation of 2D and 3D images, such as computed tomography and satellite remote sensing. This package implements Bayesian image analysis using the hidden Potts model with external field prior of Moores et al. (2015) <doi:10.1016/j.csda.201412001>. Latent labels are sampled using chequerboard updating or Swendsen-Wang. Algorithms for the smoothing parameter include pseudolikelihood, path sampling, the exchange algorithm, approximate Bayesian computation (ABC-MCMC and ABC-SMC), and the parametric functional approximate Bayesian (PFAB) algorithm. Refer to Moores, Pettitt & Mengersen (2020) <doi:10.1007/978-3-030-42553-1_6> for an overview and also to <doi:10.1007/s11222-014-9525-6> and <doi:10.1214/18-BA1130> for further details of specific algorithms.

Version: 0.7-0
Depends: R (≥ 3.5.0)
Imports: Rcpp (≥ 1.0.12)
LinkingTo: Rcpp, RcppArmadillo
Published: 2025年10月10日
Author: Matt Moores ORCID iD [aut, cre, cph], Dai Feng [ctb], Kerrie Mengersen ORCID iD [aut, ths]
Maintainer: Matt Moores <mmoores at gmail.com>
License: GPL-2 | GPL-3 | file LICENSE [expanded from: GPL (≥ 2) | file LICENSE]
NeedsCompilation: yes
Materials: README, NEWS
CRAN checks: bayesImageS results

Documentation:

Reference manual: bayesImageS.html , bayesImageS.pdf

Downloads:

Windows binaries: r-devel: bayesImageS_0.7-0.zip, r-release: bayesImageS_0.7-0.zip, r-oldrel: bayesImageS_0.7-0.zip
macOS binaries: r-release (arm64): bayesImageS_0.7-0.tgz, r-oldrel (arm64): bayesImageS_0.7-0.tgz, r-release (x86_64): bayesImageS_0.7-0.tgz, r-oldrel (x86_64): bayesImageS_0.7-0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bayesImageS to link to this page.

AltStyle によって変換されたページ (->オリジナル) /