R package arulesViz - Visualizing Association Rules and Frequent Itemsets

r-universe status Package on CRAN CRAN RStudio mirror downloads

Introduction

This R package extends package arules with various visualization techniques for association rules and itemsets. The package also includes several interactive visualizations for rule exploration.

The following R packages use arulesViz: arules, fdm2id, rattle, TELP

To cite package ‘arulesViz’ in publications use:

Hahsler M (2017). "arulesViz: Interactive Visualization of Association Rules with R." R Journal, 9(2), 163-175. ISSN 2073-4859, doi:10.32614/RJ-2017-047 https://doi.org/10.32614/RJ-2017-047, https://journal.r-project.org/archive/2017/RJ-2017-047/RJ-2017-047.pdf.

@Article{,
 title = {arules{V}iz: {I}nteractive Visualization of Association Rules with {R}},
 author = {Michael Hahsler},
 year = {2017},
 journal = {R Journal},
 volume = {9},
 number = {2},
 pages = {163--175},
 url = {https://journal.r-project.org/archive/2017/RJ-2017-047/RJ-2017-047.pdf},
 doi = {10.32614/RJ-2017-047},
 month = {December},
 issn = {2073-4859},
}

This might also require the development version of arules.

Features

Available Visualizations

Installation

Stable CRAN version: Install from within R with

 install.packages("arulesViz")

Current development version: Install from r-universe.

 install.packages("arulesViz",
 repos = c("https://mhahsler.r-universe.dev",
 "https://cloud.r-project.org/"))

Usage

Mine some rules.

 library("arulesViz")
 data("Groceries")
rules <- apriori(Groceries, parameter = list(support = 0.005, confidence = 0.5))
## Apriori
## 
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.5 0.1 1 none FALSE TRUE 5 0.005 1
## maxlen target ext
## 10 rules TRUE
## 
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
## 
## Absolute minimum support count: 49 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [120 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [120 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].

Standard visualizations

 plot(rules)
 plot(rules, method = "graph", limit = 20)

Interactive visualization

Live examples for interactive visualizations can be seen in Chapter 5 of An R Companion for Introduction to Data Mining

References

AltStyle によって変換されたページ (->オリジナル) /