ODRF: Oblique Decision Random Forest for Classification and Regression

The oblique decision tree (ODT) uses linear combinations of predictors as partitioning variables in a decision tree. Oblique Decision Random Forest (ODRF) is an ensemble of multiple ODTs generated by feature bagging. Oblique Decision Boosting Tree (ODBT) applies feature bagging during the training process of ODT-based boosting trees to ensemble multiple boosting trees. All three methods can be used for classification and regression, and ODT and ODRF serve as supplements to the classical CART of Breiman (1984) <doi:10.1201/9781315139470> and Random Forest of Breiman (2001) <doi:10.1023/A:1010933404324> respectively.

Version: 0.0.5
Depends: partykit, R (≥ 3.5.0)
Imports: doParallel, foreach, glue, graphics, grid, lifecycle, magrittr, nnet, parallel, Pursuit, Rcpp, rlang (≥ 0.4.11), stats, rpart, methods, glmnet
Suggests: knitr, rmarkdown, spelling, testthat (≥ 3.0.0)
Published: 2025年04月25日
Author: Yu Liu [aut, cre, cph], Yingcun Xia [aut]
Maintainer: Yu Liu <liuyuchina123 at gmail.com>
License: GPL (≥ 3)
NeedsCompilation: yes
Language: en-US
Citation: ODRF citation info
Materials: README, NEWS
CRAN checks: ODRF results

Documentation:

Reference manual: ODRF.html , ODRF.pdf

Downloads:

Package source: ODRF_0.0.5.tar.gz
Windows binaries: r-devel: ODRF_0.0.5.zip, r-release: ODRF_0.0.5.zip, r-oldrel: ODRF_0.0.5.zip
macOS binaries: r-release (arm64): ODRF_0.0.5.tgz, r-oldrel (arm64): ODRF_0.0.5.tgz, r-release (x86_64): ODRF_0.0.5.tgz, r-oldrel (x86_64): ODRF_0.0.5.tgz
Old sources: ODRF archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ODRF to link to this page.

AltStyle によって変換されたページ (->オリジナル) /