NeEDS4BigData: New Experimental Design Based Subsampling Methods for Big Data

Subsampling methods for big data under different models and assumptions. Starting with linear regression and leading to Generalised Linear Models, softmax regression, and quantile regression. Specifically, the model-robust subsampling method proposed in Mahendran, A., Thompson, H., and McGree, J. M. (2023) <doi:10.1007/s00362-023-01446-9>, where multiple models can describe the big data, and the subsampling framework for potentially misspecified Generalised Linear Models in Mahendran, A., Thompson, H., and McGree, J. M. (2025) <doi:10.48550/arXiv.2510.05902>.

Version: 1.0.1
Depends: R (≥ 4.1.0)
Published: 2025年10月22日
Author: Amalan Mahendran ORCID iD [aut, cre]
Maintainer: Amalan Mahendran <amalan0595 at gmail.com>
License: MIT + file LICENSE
NeedsCompilation: no
Language: en-GB
CRAN checks: NeEDS4BigData results

Documentation:

Downloads:

Windows binaries: r-devel: NeEDS4BigData_1.0.1.zip, r-release: NeEDS4BigData_1.0.1.zip, r-oldrel: NeEDS4BigData_1.0.1.zip
macOS binaries: r-release (arm64): NeEDS4BigData_1.0.1.tgz, r-oldrel (arm64): NeEDS4BigData_1.0.1.tgz, r-release (x86_64): NeEDS4BigData_1.0.1.tgz, r-oldrel (x86_64): NeEDS4BigData_1.0.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=NeEDS4BigData to link to this page.

AltStyle によって変換されたページ (->オリジナル) /