GHRmodel: Bayesian Hierarchical Modelling of Spatio-Temporal Health Data

Supports modeling health outcomes using Bayesian hierarchical spatio-temporal models with complex covariate effects (e.g., linear, non-linear, interactions, distributed lag linear and non-linear models) in the 'INLA' framework. It is designed to help users identify key drivers and predictors of disease risk by enabling streamlined model exploration, comparison, and visualization of complex covariate effects. See an application of the modelling framework in Lowe, Lee, O'Reilly et al. (2021) <doi:10.1016/S2542-5196(20)30292-8>.

Version: 0.1.1
Depends: R (≥ 4.1.0)
Suggests: INLA, sf, sn, RColorBrewer, colorspace, testthat (≥ 3.0.0), spdep, knitr, rmarkdown
Published: 2025年11月07日
Author: Carles Milà ORCID iD [aut, cre], Giovenale Moirano ORCID iD [aut], Anna B. Kawiecki ORCID iD [aut], Rachel Lowe ORCID iD [aut]
Maintainer: Carles Milà <carles.milagarcia at bsc.es>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Materials: README, NEWS
CRAN checks: GHRmodel results

Documentation:

Reference manual: GHRmodel.html , GHRmodel.pdf

Downloads:

Package source: GHRmodel_0.1.1.tar.gz
Windows binaries: r-devel: GHRmodel_0.1.1.zip, r-release: GHRmodel_0.1.1.zip, r-oldrel: GHRmodel_0.1.1.zip
macOS binaries: r-release (arm64): GHRmodel_0.1.1.tgz, r-oldrel (arm64): GHRmodel_0.1.1.tgz, r-release (x86_64): GHRmodel_0.1.1.tgz, r-oldrel (x86_64): GHRmodel_0.1.1.tgz
Old sources: GHRmodel archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=GHRmodel to link to this page.

AltStyle によって変換されたページ (->オリジナル) /