#Haskell, 67 bytes
Haskell, 67 bytes
Here's the code:
a&b|b<2=0|a==b=1+2&(b-1)|mod b a<1=1+2&(b-div b a)|1<2=(a+1)&b
(2&)
And here's one reason why Haskell is awesome:
f = (2&)
(-->) :: Eq a => a -> a -> Bool
(-->) = (==)
h=[f(5) --> 3
,f(30) --> 6
,f(31) --> 7
,f(32) --> 5
,f(100) --> 8
,f(200) --> 9
,f(2016^155) --> 2015
]
Yes, in Haskell you can define --> to be equivalent to ==.
#Haskell, 67 bytes
Here's the code:
a&b|b<2=0|a==b=1+2&(b-1)|mod b a<1=1+2&(b-div b a)|1<2=(a+1)&b
(2&)
And here's one reason why Haskell is awesome:
f = (2&)
(-->) :: Eq a => a -> a -> Bool
(-->) = (==)
h=[f(5) --> 3
,f(30) --> 6
,f(31) --> 7
,f(32) --> 5
,f(100) --> 8
,f(200) --> 9
,f(2016^155) --> 2015
]
Yes, in Haskell you can define --> to be equivalent to ==.
Haskell, 67 bytes
Here's the code:
a&b|b<2=0|a==b=1+2&(b-1)|mod b a<1=1+2&(b-div b a)|1<2=(a+1)&b
(2&)
And here's one reason why Haskell is awesome:
f = (2&)
(-->) :: Eq a => a -> a -> Bool
(-->) = (==)
h=[f(5) --> 3
,f(30) --> 6
,f(31) --> 7
,f(32) --> 5
,f(100) --> 8
,f(200) --> 9
,f(2016^155) --> 2015
]
Yes, in Haskell you can define --> to be equivalent to ==.
#Haskell, 6567 bytes
Here's the code:
a&b|b<2=0|a==b=1+2&(b-1)|mod b a<1=1+2&(b-div b a)|1<2=(a+1)&b
(2&)
And here's one reason why Haskell is awesome:
f = (2&)
(-->) :: Eq a => a -> a -> Bool
(-->) = (==)
h=[f(5) --> 3
,f(30) --> 6
,f(31) --> 7
,f(32) --> 5
,f(100) --> 8
,f(200) --> 9
,f(2016^155) --> 2015
]
Yes, in Haskell you can define --> to be equivalent to ==.
#Haskell, 65 bytes
Here's the code:
a&b|b<2=0|a==b=1+2&(b-1)|mod b a<1=1+2&(b-div b a)|1<2=(a+1)&b
2&
And here's one reason why Haskell is awesome:
f = (2&)
(-->) :: Eq a => a -> a -> Bool
(-->) = (==)
h=[f(5) --> 3
,f(30) --> 6
,f(31) --> 7
,f(32) --> 5
,f(100) --> 8
,f(200) --> 9
,f(2016^155) --> 2015
]
Yes, in Haskell you can define --> to be equivalent to ==.
#Haskell, 67 bytes
Here's the code:
a&b|b<2=0|a==b=1+2&(b-1)|mod b a<1=1+2&(b-div b a)|1<2=(a+1)&b
(2&)
And here's one reason why Haskell is awesome:
f = (2&)
(-->) :: Eq a => a -> a -> Bool
(-->) = (==)
h=[f(5) --> 3
,f(30) --> 6
,f(31) --> 7
,f(32) --> 5
,f(100) --> 8
,f(200) --> 9
,f(2016^155) --> 2015
]
Yes, in Haskell you can define --> to be equivalent to ==.
#Haskell, 65 bytes
Here's the code:
a&b|b<2=0|a==b=1+2&(b-1)|mod b a<1=1+2&(b-div b a)|1<2=(a+1)&b
2&
And here's one reason why Haskell is awesome:
f = (2&)
(-->) :: Eq a => a -> a -> Bool
(-->) = (==)
h=[f(5) --> 3
,f(30) --> 6
,f(31) --> 7
,f(32) --> 5
,f(100) --> 8
,f(200) --> 9
,f(2016^155) --> 2015
]
Yes, in Haskell you can define --> to be equivalent to ==.