APL(NARS), 64 chars
r←B ×ばつ⍳w&l×ばつ(y+1)×ばつ⍳w>z⋄r←1
9+たす17+たす4+たす19+たす11+たす4=わ64
f(y)=×ばつ(y+1)×ばつ(y+2)=y^3+3y^2+2y is a crescent function and from y0=⌈(6w)^(1/3) => (y0)^3≥6w =>(y0)^3+3(y0)^2+2(y0)>6w
so it is possible begin the loop in that point y0 and decrease y0 until (y0)^3+3(y0)^2+2(y0)≤6w
a⊂⍨B ̈a←⍳123
1 4 10 20 35 56 84 120
it seems is possible to use big rational and big float too
B 45487864677774111x
0
B ×ばつ(45487864677774111x+1)×ばつ(45487864677774111x+2)÷6
1
but because √ is not implemented for rationals result for big number should not be ok
APL(NARS), 64 chars
r←B ×ばつ⍳w&l×ばつ(y+1)×ばつ⍳w>z⋄r←1
9+たす17+たす4+たす19+たす11+たす4=わ64
f(y)=×ばつ(y+1)×ばつ(y+2)=y^3+3y^2+2y is a crescent function and from y0=⌈(6w)^(1/3) => (y0)^3≥6w =>(y0)^3+3(y0)^2+2(y0)>6w
so it is possible begin the loop in that point y0 and decrease y0 until (y0)^3+3(y0)^2+2(y0)≤6w
a⊂⍨B ̈a←⍳123
1 4 10 20 35 56 84 120
B 45487864677774111x
0
B ×ばつ(45487864677774111x+1)×ばつ(45487864677774111x+2)÷6
1
but because √ is not implemented for rationals result for big number should not be ok
APL(NARS), 64 chars
r←B ×ばつ⍳w&l×ばつ(y+1)×ばつ⍳w>z⋄r←1
9+たす17+たす4+たす19+たす11+たす4=わ64
f(y)=×ばつ(y+1)×ばつ(y+2)=y^3+3y^2+2y is a crescent function and from y0=⌈(6w)^(1/3) => (y0)^3≥6w =>(y0)^3+3(y0)^2+2(y0)>6w
so it is possible begin the loop in that point y0 and decrease y0 until (y0)^3+3(y0)^2+2(y0)≤6w
a⊂⍨B ̈a←⍳123
1 4 10 20 35 56 84 120
it seems is possible to use big rational and big float too
B 45487864677774111x
0
B ×ばつ(45487864677774111x+1)×ばつ(45487864677774111x+2)÷6
1
APL(NARS), 64 chars
r←B ×ばつ⍳w&l×ばつ(y+1)×ばつ⍳w>z⋄r←1
9+たす17+たす4+たす19+たす11+たす4=わ64
f(y)=×ばつ(y+1)×ばつ(y+2)=y^3+3y^2+2y is a crescent function and from y0=⌈(6w)^(1/3) => (y0)^3≥6w =>(y0)^3+3(y0)^2+2(y0)>6w
so it is possible begin the loop in that point y0 and decrease y0 until (y0)^3+3(y0)^2+2(y0)≤6w
a⊂⍨B ̈a←⍳123
1 4 10 20 35 56 84 120
B 45487864677774111x
0
B ×ばつ(45487864677774111x+1)×ばつ(45487864677774111x+2)÷6
1
but because √ is not implemented for rationals result for big number should not be ok
APL(NARS), 64 chars
r←B ×ばつ⍳w&l×ばつ(y+1)×ばつ⍳w>z⋄r←1
9+たす17+たす4+たす19+たす11+たす4=わ64
f(y)=×ばつ(y+1)×ばつ(y+2)=y^3+3y^2+2y is a crescent function and from y0=⌈(6w)^(1/3) => (y0)^3≥6w =>(y0)^3+3(y0)^2+2(y0)>6w
so it is possible begin the loop in that point y0 and decrease y0 until (y0)^3+3(y0)^2+2(y0)≤6w
a⊂⍨B ̈a←⍳123
1 4 10 20 35 56 84 120
B 45487864677774111x
0
B ×ばつ(45487864677774111x+1)×ばつ(45487864677774111x+2)÷6
1
APL(NARS), 64 chars
r←B ×ばつ⍳w&l×ばつ(y+1)×ばつ⍳w>z⋄r←1
9+たす17+たす4+たす19+たす11+たす4=わ64
f(y)=×ばつ(y+1)×ばつ(y+2)=y^3+3y^2+2y is a crescent function and from y0=⌈(6w)^(1/3) => (y0)^3≥6w =>(y0)^3+3(y0)^2+2(y0)>6w
so it is possible begin the loop in that point y0 and decrease y0 until (y0)^3+3(y0)^2+2(y0)≤6w
a⊂⍨B ̈a←⍳123
1 4 10 20 35 56 84 120
B 45487864677774111x
0
B ×ばつ(45487864677774111x+1)×ばつ(45487864677774111x+2)÷6
1
but because √ is not implemented for rationals result for big number should not be ok
APL(NARS), 64 chars
r←B w;y;z
×ばつ6⋄r←0⋄→3×ばつ6⋄r←0⋄→3
y+←1y-←1
×ばつ⍳w&g×ばつ×ばつ⍳w&l×ばつ(y+1)×ばつy+2
×ばつ⍳w<z⋄r←1×ばつ⍳w>z⋄r←1
9+たす17+たす4+たす19+たす11+たす4=わ64
test:f(y)=×ばつ(y+1)×ばつ(y+2)=y^3+3y^2+2y is a crescent function and from y0=⌈(6w)^(1/3) => (y0)^3≥6w =>(y0)^3+3(y0)^2+2(y0)>6w
so it is possible begin the loop in that point y0 and decrease y0 until (y0)^3+3(y0)^2+2(y0)≤6w
a⊂⍨B ̈a←⍳123
1 4 10 20 35 56 84 120
note that this is ok even for big integers
B 45487864677774111x
0
B ×ばつ(45487864677774111x+1)×ばつ(45487864677774111x+2)÷6
1
APL(NARS), 64 chars
r←B w;y;z
×ばつ6⋄r←0⋄→3
y+←1
×ばつ⍳w&g×ばつ(y+1)×ばつy+2
×ばつ⍳w<z⋄r←1
9+たす17+たす4+たす19+たす11+たす4=わ64
test:
a⊂⍨B ̈a←⍳123
1 4 10 20 35 56 84 120
note that this is ok even for big integers
B 45487864677774111x
0
B ×ばつ(45487864677774111x+1)×ばつ(45487864677774111x+2)÷6
1
APL(NARS), 64 chars
r←B w;y;z
×ばつ6⋄r←0⋄→3
y-←1
×ばつ⍳w&l×ばつ(y+1)×ばつy+2
×ばつ⍳w>z⋄r←1
9+たす17+たす4+たす19+たす11+たす4=わ64
f(y)=×ばつ(y+1)×ばつ(y+2)=y^3+3y^2+2y is a crescent function and from y0=⌈(6w)^(1/3) => (y0)^3≥6w =>(y0)^3+3(y0)^2+2(y0)>6w
so it is possible begin the loop in that point y0 and decrease y0 until (y0)^3+3(y0)^2+2(y0)≤6w
a⊂⍨B ̈a←⍳123
1 4 10 20 35 56 84 120
B 45487864677774111x
0
B ×ばつ(45487864677774111x+1)×ばつ(45487864677774111x+2)÷6
1