#Input
Input
A single integer \1ドル \leq x \leq 10^{15}\$.
#Output
Output
The maximum number of distinct positive integers that have the product \$x\$.
#Examples
Examples
Input: 1099511627776. Output: 9. One possible optimal list of factors is: (1, 2, 4, 8, 16, 32, 64, 128, 4096).
Input: 127381. Output 4. One possible optimal list of factors is: (1, 17, 59, 127).
Related to this old question.
#Input
A single integer \1ドル \leq x \leq 10^{15}\$.
#Output
The maximum number of distinct positive integers that have the product \$x\$.
#Examples
Input: 1099511627776. Output: 9. One possible optimal list of factors is: (1, 2, 4, 8, 16, 32, 64, 128, 4096).
Input: 127381. Output 4. One possible optimal list of factors is: (1, 17, 59, 127).
Related to this old question.
Input
A single integer \1ドル \leq x \leq 10^{15}\$.
Output
The maximum number of distinct positive integers that have the product \$x\$.
Examples
Input: 1099511627776. Output: 9. One possible optimal list of factors is: (1, 2, 4, 8, 16, 32, 64, 128, 4096).
Input: 127381. Output 4. One possible optimal list of factors is: (1, 17, 59, 127).
Related to this old question.
#Input
A single integer \1ドル \leq x \leq 10^{15}\$.
#Output
The maximum number of distinct positive integers that have the product \$x\$.
#Examples
Input: 1099511627776. Output: 9. One possible optimal list of factors is: (1, 2, 4, 8, 16, 32, 64, 128, 4096).
Input: 127381. Output 4. One possible optimal list of factors is: (1, 17, 59, 127).
Related to this old question.
#Input
A single integer \1ドル \leq x \leq 10^{15}\$.
#Output
The maximum number of distinct positive integers that have the product \$x\$.
#Examples
Input: 1099511627776. Output: 9. One possible list of factors is: (1, 2, 4, 8, 16, 32, 64, 128, 4096).
Input: 127381. Output 4. One possible list of factors is: (1, 17, 59, 127).
Related to this old question.
#Input
A single integer \1ドル \leq x \leq 10^{15}\$.
#Output
The maximum number of distinct positive integers that have the product \$x\$.
#Examples
Input: 1099511627776. Output: 9. One possible optimal list of factors is: (1, 2, 4, 8, 16, 32, 64, 128, 4096).
Input: 127381. Output 4. One possible optimal list of factors is: (1, 17, 59, 127).
Related to this old question.
#Input
A single integer \1ドル \leq x \leq 10^{15}\$.
#Output
The maximum number of distinct positive integers that have the product \$x\$.
#Examples
Input: 1099511627776. Output: 9. One possible list of factors is: (1, 2, 4, 8, 16, 32, 64, 128, 4096).
Input: 127381. Output 4. One possible list of factors is: (1, 17, 59, 127).
Related to this old question .
#Input
A single integer \1ドル \leq x \leq 10^{15}\$.
#Output
The maximum number of distinct positive integers that have the product \$x\$.
#Examples
Input: 1099511627776. Output: 9. One possible list of factors is: (1, 2, 4, 8, 16, 32, 64, 128, 4096).
Input: 127381. Output 4. One possible list of factors is: (1, 17, 59, 127).
#Input
A single integer \1ドル \leq x \leq 10^{15}\$.
#Output
The maximum number of distinct positive integers that have the product \$x\$.
#Examples
Input: 1099511627776. Output: 9. One possible list of factors is: (1, 2, 4, 8, 16, 32, 64, 128, 4096).
Input: 127381. Output 4. One possible list of factors is: (1, 17, 59, 127).
Related to this old question .