The title of Numberphile's newest video, 13532385396179, is a fixed point of the following function \$f\$ on the positive integers:
Let \$n\$ be a positive integer. Write the prime factorization in the usual way, e.g. \60ドル = 2^2 \cdot 3 \cdot 5\$, in which the primes are written in increasing order, and exponents of 1 are omitted. Then bring exponents down to the line and omit all multiplication signs, obtaining a number \$f(n)\$. [...] for example, \$f(60) = f(2^2 \cdot 3 \cdot 5) = 2235\$.
(The above definition is taken from Problem 5 of Five 1,000ドル Problems - John H. Conway)
Note that \$f(13532385396179) = f(13 \cdot 53^2 \cdot 3853 \cdot 96179) = 13532385396179\$.
Task
Take a positive composite integer \$n\$ as input, and output \$f(n)\$.
Another example
\48ドル = 2^4 \cdot 3\$, so \$f (48) = 243\$.
Testcases
More testcases are available here.
4 -> 22
6 -> 23
8 -> 23
48 -> 243
52 -> 2213
60 -> 2235
999 -> 3337
9999 -> 3211101
V= "concatenate to a single string and eval as Jelly" \$\endgroup\$Ḍ(Convert from decimal to integer)? \$\endgroup\$FḌin the past - that's a good tip! \$\endgroup\$