Module llm (1.31.0)
 
 
 
 
 
 
 Stay organized with collections
 
 
 
 Save and categorize content based on your preferences.
 
  
 
 - 2.27.0 (latest)
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
LLM models.
Classes
Claude3TextGenerator
Claude3TextGenerator(
 *,
 model_name: typing.Literal[
 "claude-3-sonnet", "claude-3-haiku", "claude-3-5-sonnet", "claude-3-opus"
 ] = "claude-3-sonnet",
 session: typing.Optional[bigframes.session.Session] = None,
 connection_name: typing.Optional[str] = None
)Claude3 text generator LLM model.
Go to Google Cloud Console -> Vertex AI -> Model Garden page to enabe the models before use. Must have the Consumer Procurement Entitlement Manager Identity and Access Management (IAM) role to enable the models. https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/use-partner-models#grant-permissions
The models only available in specific regions. Check https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/use-claude#regions for details.| Parameters | |
|---|---|
| Name | Description | 
| model_name | str, Default to "claude-3-sonnet"The model for natural language tasks. Possible values are "claude-3-sonnet", "claude-3-haiku", "claude-3-5-sonnet" and "claude-3-opus". "claude-3-sonnet" is Anthropic's dependable combination of skills and speed. It is engineered to be dependable for scaled AI deployments across a variety of use cases. "claude-3-haiku" is Anthropic's fastest, most compact vision and text model for near-instant responses to simple queries, meant for seamless AI experiences mimicking human interactions. "claude-3-5-sonnet" is Anthropic's most powerful AI model and maintains the speed and cost of Claude 3 Sonnet, which is a mid-tier model. "claude-3-opus" is Anthropic's second-most powerful AI model, with strong performance on highly complex tasks. https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/use-claude#available-claude-models Default to "claude-3-sonnet". | 
| session | bigframes.Session or NoneBQ session to create the model. If None, use the global default session. | 
| connection_name | str or NoneConnection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>. | 
GeminiTextGenerator
GeminiTextGenerator(
 *,
 model_name: typing.Literal[
 "gemini-pro",
 "gemini-1.5-pro-preview-0514",
 "gemini-1.5-flash-preview-0514",
 "gemini-1.5-pro-001",
 "gemini-1.5-pro-002",
 "gemini-1.5-flash-001",
 "gemini-1.5-flash-002",
 "gemini-2.0-flash-exp",
 ] = "gemini-pro",
 session: typing.Optional[bigframes.session.Session] = None,
 connection_name: typing.Optional[str] = None,
 max_iterations: int = 300
)Gemini text generator LLM model.
| Parameters | |
|---|---|
| Name | Description | 
| model_name | str, Default to "gemini-pro"The model for natural language tasks. Accepted values are "gemini-pro", "gemini-1.5-pro-preview-0514", "gemini-1.5-flash-preview-0514", "gemini-1.5-pro-001", "gemini-1.5-pro-002", "gemini-1.5-flash-001", "gemini-1.5-flash-002" and "gemini-2.0-flash-exp". Default to "gemini-pro". | 
| session | bigframes.Session or NoneBQ session to create the model. If None, use the global default session. | 
| connection_name | str or NoneConnection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>. | 
| max_iterations | Optional[int], Default to 300The number of steps to run when performing supervised tuning. | 
PaLM2TextEmbeddingGenerator
PaLM2TextEmbeddingGenerator(
 *,
 model_name: typing.Literal[
 "textembedding-gecko", "textembedding-gecko-multilingual"
 ] = "textembedding-gecko",
 version: typing.Optional[str] = None,
 session: typing.Optional[bigframes.session.Session] = None,
 connection_name: typing.Optional[str] = None
)PaLM2 text embedding generator LLM model.
| Parameters | |
|---|---|
| Name | Description | 
| model_name | str, Default to "textembedding-gecko"The model for text embedding. "textembedding-gecko" returns model embeddings for text inputs. "textembedding-gecko-multilingual" returns model embeddings for text inputs which support over 100 languages. Default to "textembedding-gecko". | 
| version | str or NoneModel version. Accepted values are "001", "002", "003", "latest" etc. Will use the default version if unset. See https://cloud.google.com/vertex-ai/docs/generative-ai/learn/model-versioning for details. | 
| session | bigframes.Session or NoneBQ session to create the model. If None, use the global default session. | 
| connection_name | str or NoneConnection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>. | 
PaLM2TextGenerator
PaLM2TextGenerator(
 *,
 model_name: typing.Literal["text-bison", "text-bison-32k"] = "text-bison",
 session: typing.Optional[bigframes.session.Session] = None,
 connection_name: typing.Optional[str] = None,
 max_iterations: int = 300
)PaLM2 text generator LLM model.
| Parameters | |
|---|---|
| Name | Description | 
| model_name | str, Default to "text-bison"The model for natural language tasks. "text-bison" returns model fine-tuned to follow natural language instructions and is suitable for a variety of language tasks. "text-bison-32k" supports up to 32k tokens per request. Default to "text-bison". | 
| session | bigframes.Session or NoneBQ session to create the model. If None, use the global default session. | 
| connection_name | str or NoneConnection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>. | 
| max_iterations | Optional[int], Default to 300The number of steps to run when performing supervised tuning. | 
TextEmbeddingGenerator
TextEmbeddingGenerator(
 *,
 model_name: typing.Literal[
 "text-embedding-005", "text-embedding-004", "text-multilingual-embedding-002"
 ] = "text-embedding-004",
 session: typing.Optional[bigframes.session.Session] = None,
 connection_name: typing.Optional[str] = None
)Text embedding generator LLM model.
| Parameters | |
|---|---|
| Name | Description | 
| model_name | str, Default to "text-embedding-004"The model for text embedding. Possible values are "text-embedding-005", "text-embedding-004" or "text-multilingual-embedding-002". text-embedding models returns model embeddings for text inputs. text-multilingual-embedding models returns model embeddings for text inputs which support over 100 languages. Default to "text-embedding-004". | 
| session | bigframes.Session or NoneBQ session to create the model. If None, use the global default session. | 
| connection_name | str or NoneConnection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>. |