Class LinearRegression (0.20.1)
 
 
 
 
 
 
 Stay organized with collections
 
 
 
 Save and categorize content based on your preferences.
 
  
 
 - 2.27.0 (latest)
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
LinearRegression(
 optimize_strategy: typing.Literal[
 "auto_strategy", "batch_gradient_descent", "normal_equation"
 ] = "normal_equation",
 fit_intercept: bool = True,
 l2_reg: float = 0.0,
 max_iterations: int = 20,
 learn_rate_strategy: typing.Literal["line_search", "constant"] = "line_search",
 early_stop: bool = True,
 min_rel_progress: float = 0.01,
 ls_init_learn_rate: float = 0.1,
 calculate_p_values: bool = False,
 enable_global_explain: bool = False,
)Ordinary least squares Linear Regression.
LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation.
| Parameters | |
|---|---|
| Name | Description | 
| optimize_strategy | str, default "normal_equation"The strategy to train linear regression models. Possible values are "auto_strategy", "batch_gradient_descent", "normal_equation". Default to "normal_equation". | 
| fit_intercept | bool, default TrueDefault  | 
| l2_reg | float, default 0.0The amount of L2 regularization applied. Default to 0. | 
| max_iterations | int, default 20The maximum number of training iterations or steps. Default to 20. | 
| learn_rate_strategy | str, default "line_search"The strategy for specifying the learning rate during training. Default to "line_search". | 
| early_stop | bool, default TrueWhether training should stop after the first iteration in which the relative loss improvement is less than the value specified for min_rel_progress. Default to True. | 
| min_rel_progress | float, default 0.01The minimum relative loss improvement that is necessary to continue training when EARLY_STOP is set to true. For example, a value of 0.01 specifies that each iteration must reduce the loss by 1% for training to continue. Default to 0.01. | 
| ls_init_learn_rate | float, default 0.1Sets the initial learning rate that learn_rate_strategy='line_search' uses. This option can only be used if line_search is specified. Default to 0.1. | 
| calculate_p_values | bool, default FalseSpecifies whether to compute p-values and standard errors during training. Default to False. | 
| enable_global_explain | bool, default FalseWhether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False. | 
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values
fit
fit(
 X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
 y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.ml.base._TFit linear model.
| Parameters | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.Series Series or DataFrame of shape (n_samples, n_features). Training data. | 
| y | bigframes.dataframe.DataFrame or bigframes.series.Series Series or DataFrame of shape (n_samples,) or (n_samples, n_targets). Target values. Will be cast to X's dtype if necessary. | 
| Returns | |
|---|---|
| Type | Description | 
| LinearRegression | Fitted Estimator. | 
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description | 
| deep | bool, default TrueDefault  | 
| Returns | |
|---|---|
| Type | Description | 
| Dictionary | A dictionary of parameter names mapped to their values. | 
predict
predict(
 X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFramePredict using the linear model.
| Parameter | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.Series Series or DataFrame of shape (n_samples, n_features). Samples. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.dataframe.DataFrame  | DataFrame of shape (n_samples, n_input_columns + n_prediction_columns). Returns predicted values. | 
register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._TRegister the model to Vertex AI.
After register, go to Google Cloud Console (https://console.cloud.google.com/vertex-ai/models) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.
| Parameter | |
|---|---|
| Name | Description | 
| vertex_ai_model_id | Optional[str], default Noneoptional string id as model id in Vertex. If not set, will by default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation. | 
score
score(
 X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
 y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.dataframe.DataFrameCalculate evaluation metrics of the model.
| Parameters | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.Series Series or DataFrame of shape (n_samples, n_features). Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape  | 
| y | bigframes.dataframe.DataFrame or bigframes.series.Series Series or DataFrame of shape (n_samples,) or (n_samples, n_outputs). True values for  | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.dataframe.DataFrame  | A DataFrame of the evaluation result. | 
to_gbq
to_gbq(
 model_name: str, replace: bool = False
) -> bigframes.ml.linear_model.LinearRegressionSave the model to BigQuery.
| Parameters | |
|---|---|
| Name | Description | 
| model_name | strthe name of the model. | 
| replace | bool, default Falsewhether to replace if the model already exists. Default to False. | 
| Returns | |
|---|---|
| Type | Description | 
| LinearRegression | saved model. |