Quantized Interpolation Error Bound

Next | Prev | Up | Top | JOS Index | JOS Pubs | JOS Home | Search

Quantized Interpolation Error Bound

The quantized interpolation factor and its complement are representable as

[画像:\begin{eqnarray*} \eta_q&=&\eta + \nu \\ \overline{\eta }_q &=& \overline{\eta }- \nu \end{eqnarray*}]

where, since $\eta,\overline{\eta }$ are unsigned, [画像:$\vert\nu\vert\leq 2^{-({n_\eta }+1)}$]. The interpolated coefficient look-up then gives

[画像:\begin{eqnarray*} \hat{h}_{qq}(t) &=& (\overline{\eta }-\nu)[h(t_0)+\epsilon_0] + (\eta+\nu)[h(t_1)+\epsilon_1] \\ &=& \hat{h}(t) + \overline{\eta }\epsilon_0 + \eta\epsilon_1 + \nu[h(t_1)-h(t_0)], \end{eqnarray*}]

where second-order errors $\nu\epsilon_0$ and $\nu\epsilon_1$ are dropped. Since [画像:$\vert h(t_1)-h(t_0)\vert\leq M_1$], we obtain the error bound


The three terms in Eq.(14) are caused by coefficient quantization, interpolation quantization, and linear-approximation error, respectively.


Next | Prev | Up | Top | JOS Index | JOS Pubs | JOS Home | Search

Download resample.pdf
[How to cite and copy this work] [Comment on this page via email]

``The Digital Audio Resampling Home Page'', by Julius O. Smith III.
Copyright © 2020年09月17日 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA), Stanford University
CCRMA

AltStyle によって変換されたページ (->オリジナル) /