Linear Interpolation Error Bound
Next |
Prev |
Up |
Top
|
JOS Index |
JOS Pubs |
JOS Home |
Search
Let h(t) denote the lowpass filter impulse response, and assume it is
twice continuously differentiable for all t. By Taylor's theorem
[#!Goldstein!#, p. 119], we have
for some
[
画像:$\lambda \in[0,1]$], where
[
画像:$h^\prime (t_0)$] denotes the time derivative of
h(
t) evaluated at
t=
t0, and
[
画像:$h^{\prime\prime}(t_0)$] is the second derivative at
t0.
The linear interpolation error is
\begin{displaymath} e(t) \isdef h(t) - \hat{h}(t), \end{displaymath}
(7)
where $t=t_0+\eta,ドル
[
画像:$t_0=\lfloor{t}\rfloor $], $\eta=t-t_0,ドル and
[
画像:$\hat{h}(t)$] is the interpolated value given by
\begin{displaymath} \hat{h}(t) \isdef \overline{\eta }h(t_0) + \eta h(t_1), \protect \end{displaymath}
(8)
where
[
画像:$\overline{\eta }\isdef 1-\eta$] and
[
画像:$t_1\isdef t_0+1$]. Thus
t0 and
t1 are
successive time instants for which samples of
h(
t) are available,
and [
画像:$\eta \in[0,1)$] is the linear interpolation factor.
By definition,
e(t0)=e(t1)=0. That is, the interpolation error is
zero at the known samples. Let te denote any point at which
|e(t)| reaches a maximum over the interval (t0,t1). Then we
have
\begin{displaymath} \vert e(t_e)\vert \ge \vert e(t)\vert, \quad\forall t\in [t_0,t_1]. \end{displaymath}
Without loss of generality, assume
[
画像:$t_e \le t_0 + 1/2$]. (Otherwise,
replace
t0 with
t1 in the following.) Since both
h(
t) and
[
画像:$\hat{h}(t)$] are twice differentiable for all [
画像:$t\in(t_0,t_1)$], then so is
e(
t), and therefore
e'(
te)=0. Expressing
e(
t0)=0 as a Taylor
expansion of
e(
t) about
t=
te, we obtain
for some
[
画像:$\xi\in(t_0,t_1)$]. Solving for
e(
te) gives
Defining
where the maximum is taken over [
画像:$t\in(t_0,t_1)$], and noting that
[
画像:$\vert t_0-t_e\vert\le 1/2$], we obtain the upper bound
2
Next |
Prev |
Up |
Top
|
JOS Index |
JOS Pubs |
JOS Home |
Search
Download resample.pdf
[How to cite and copy this work] [Comment on this page via email]