Error in the Absence of Interpolation

Next | Prev | Up | Top | JOS Index | JOS Pubs | JOS Home | Search

Error in the Absence of Interpolation

For comparison purposes, we derive the error incurred when no interpolation of the filter table is performed. In this case, assuming rounding to the nearest table entry, we have

[画像:\begin{eqnarray*} t & = & t_0+\eta,\qquad \left\vert\eta\right\vert\leq {1\over 2} \\ \hat{h}(t) & = & h(t_0) \\ e(t) & = & h(t) - h(t_0) \\ & = & \eta h^\prime (t_0) + {1\over 2} \eta^2h^{\prime\prime}(t_0+\lambda \eta) \\ \left\vert e(t)\right\vert & \leq &{M_1\over2} + {M_2\over8}, \end{eqnarray*}]

where [画像:$M_1 \isdef \max_{t} \vert h^\prime (t)\vert$]. For the ideal lowpass, we have

[画像:\begin{displaymath} h^\prime (t) = -{1\over\omega_L}\int_0^{\omega_L}\omega\sin(\omega t) d\omega = {\omega_L t\cos(\omega_L t) - \sin(\omega_L t)\over \omega_L t^2} . \end{displaymath}]

Note that [画像:$h^\prime (L)=-1/L$] and [画像:$\vert h^\prime (t)\vert < \omega_L/2 = \pi/2L$]. Thus M1=a/L where [画像:1ドル\leq a <\pi/2$]. The no-interpolation error bound is then
[画像:\begin{displaymath} \left\vert h^\prime (t)\right\vert \leq {a\over2L} + {\pi^2\over24L^2} < {0.7854\over L} + {0.4113\over L^2}. \end{displaymath}]


Next | Prev | Up | Top | JOS Index | JOS Pubs | JOS Home | Search

Download resample.pdf
[How to cite and copy this work] [Comment on this page via email]

``The Digital Audio Resampling Home Page'', by Julius O. Smith III.
Copyright © 2020年09月17日 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA), Stanford University
CCRMA

AltStyle によって変換されたページ (->オリジナル) /