[フレーム]
1 - 40 件 / 68件
朝日新聞デジタル @asahicom 広島大の26歳「アジアの科学者100人」に ブラックホール研究で asahi.com/articles/ASR9C... シンガポールの科学誌が発表した今年の「アジアの科学者100人」に、広島大学大学院で助教を務める片山春菜さん(26)が選ばれました。 広島大に在籍する研究者の受賞は初めてといいます。 2023年09月12日 09:16:25 キノコ老師🍄🧚 @SMBKRHYT_kinoko 広島大の26歳「アジアの科学者100人」に ブラックホール研究で:朝日新聞デジタル asahi.com/articles/ASR9C... 博士号取得して即助教になっているあたりに優秀さを感じる。あと、大学院を3年で修了していない?? twitter.com/i/web/status/1... 2023年09月12日 12:15:12 キノコ老師🍄🧚 @SMBKRHYT_
ブラックホールに落ちて行くときにどんな光景が見えるのか、疑問に思ったことはありませんか。そんな疑問に答える映像をNASA(アメリカ航空宇宙局)が公開しました。コンピュータ・シミュレーションにより可視化した映像です。 ブラックホールには、それ以上近づくと光でさえ脱出することができなくなる境界があります。その境界面は「事象の地平面」と呼ばれます。 今回公開された可視化映像は、その事象の地平面の内部まで入って行くものと、事象の地平面に接近後にそこから離れて戻ってくるものと、2パターンが公開されています。 カメラが接近していくブラックホールは、天の川銀河の中心にある、太陽の430万倍の質量をもつ超巨大ブラックホールです。ブラックホールの事象の地平面は約2500万kmにおよびます。ブラックホールは高温で輝くガス円盤(降着円盤)に取り囲まれており、また円盤の内側には光子リングも見えています。 こちらは
宇宙の物理学とブラックホールの物理学には類似点がある。このことから、一部の宇宙論研究者は、私たちの宇宙はブラックホールの中で生まれたのではないかと考えている。(PHOTOGRAPH BY NASA GODDARD) 星空を見上げると、宇宙が無限に広がっているように思えるものだ。しかし、宇宙論研究者は、宇宙は有限だと知っている。第一に、宇宙論の最良のモデルは、空間と時間に始まりがあったことを示している。「特異点」と呼ばれる原子以下の点だ。この高温高密度の点は、ビッグバンが起きたとき、急速に外側へと膨張した。 第二に、観測可能な宇宙は「事象の地平面」と呼ばれる境界に囲まれている。宇宙は超光速で膨張しているため、その先は観測不能な断崖絶壁だ。最良の望遠鏡でさえ到達できないほど遠すぎる領域がある。(参考記事:「最新望遠鏡で原始の宇宙へ」) 特異点と事象の地平面という2つの要素は、ブラックホールの重
NASAは、観測されたデータをもとに、音に変換する「ソニフィケーション」という試みを行なっており、今回公開されたものは、地球から2億5,000万光年離れたペルセウス座銀河団のブラックホールの音源。実際の音は、ピアノ中央の「ド(C)」の音よりも57オクターブ低く、人間の耳では聞き取れない。しかし最新の可聴化技術によって、人間の耳で聞こえるように調整されたという。 天文学者が、ブラックホールの重力波が銀河団の高音ガスにさざ波を引き起こし、それが音に変換される可能性があることを発見した2003年以来、ペルセウス座銀河団のブラックホールは音に関連づけられていたそうだ。今回の可聴化は、NASAのチャンドラX線観測衛星のデータを元に作られており、初めて音として聞くことができるようになった。 ネット上では「亡者の叫びみたいで怖い( ́;ω;`)」「聞いちゃいけない音みたいで...何とも言えない気持ちになる(う
広島大学は、電気回路において擬似的なブラックホールを創生し、それを用いたレーザー理論を構築することに成功し、現在の技術では実際のブラックホールでの観測が不可能なホーキング輻射を観測可能にし、一般相対性理論(重力)と量子力学を統一する「量子重力理論」の完成に向けた取り組みを加速することになると発表した。 同成果は、広島大大学院 先進理工系科学研究科の片山春菜大学院生によるもの。詳細は、英オンライン総合学術誌「Scientific Reports」に掲載された。 自然界に存在する電磁気力、強い力、弱い力、重力の4つの力をすべて統一できるとされる超大統一理論は、重力を扱う一般相対性理論と、量子の世界を扱う量子力学を結びつけることができれば完成するとされることから、「量子重力理論」などとも呼ばれるが、重力と量子の世界は折り合いが悪く、その統一は困難とされ、4つの力の統一にはまだ長い時間がかかるとさ
宇宙の「まとめ」です。 オーストラリア国立大学(ANU)で行われた研究によって、宇宙に存在するあらゆる物体のサイズと質量の関係を1枚の紙に並べた、最もスケールが大きい図表が作られました。 この図表を見れば、宇宙に存在するあらゆる物体のサイズと質量がどんな関係にあるかがわかり、私たちの宇宙の基本的な性質を視覚的に知ることができます。 ただ作られた図表は「素粒子から全宇宙」までを網羅する極スケールであるため、ぱっと見ただけではよくわかりません。 そこで今回は図表のどこに何があるかをわかりやすく説明し、「宇宙全体がブラックホールになる」ことを示唆する理由についても解説したいと思います。 研究内容の詳細は、2023年10月1日に『American Journal of Physics』にて「全ての物体といくつかの疑問(All objects and some questions)」とのタイトルで公
みなさんこんにちは! サイエンスライターな妖精の彩恵りりだよ! 今回の解説は、宇宙の全ての物質を網羅したチャートについて詳しく解説するよ! 普段解説しているニュースと違って、この論文は何か新しい科学的発見とかそういう話じゃないけど、全てを網羅した結果、宇宙そのものに関して中々面白い事実が分かってきた、というユニークな研究でもあるよ! 宇宙の全ての物質を語れる理論は存在しない 私たちの宇宙には素粒子、原子、ウイルス、生物、惑星、恒星、銀河、ブラックホールなど、実に多種多様な物質が存在するよね?物質はどのように誕生したのか?というのは物理学の究極の課題の1つだよ。 また、それと関連する話題として、宇宙を正確に記述する物理学の理論が未完成だという問題もあるよ。現在の物理学は、「一般相対性理論」と「量子力学」の2本柱で構築されているけど、課題も存在するよ。 例えば、一般相対性理論は宇宙や銀河くらい
私たちの太陽系がある天の川銀河の中心に存在する巨大ブラックホールの輪郭の撮影に成功したと、日本も参加する国際研究グループが発表しました。 天の川銀河の巨大ブラックホールの姿をとらえたのは初めてで、銀河の成り立ちを理解する重要な手がかりになる成果として注目されています。 国際研究グループに参加する日本の研究者が記者会見を開き、天の川銀河の中心の巨大ブラックホールではないかとされている天体を、世界6か所の電波望遠鏡をつないで観測した結果を発表しました。 この天体は、「いて座」の方角に2万7000光年離れているということで、画像には、強い重力に引き寄せられて高温になったガスによって明るい輪のようなものが見え、その中央には、光が脱出できないために黒い穴のようになった「ブラックホールの影」が写しだされています。 研究グループは天の川銀河の中心に存在する巨大ブラックホールの輪郭の撮影に成功したとしてい
宇宙はブラックホールに見つめられているのかもしれません。 米国のシカゴ大学(University of Chicag)で行われた研究によって、ブラックホールそのものに、量子世界の不思議な現象である「重ね合わせ」を破壊する効果がある可能性が示されました。 量子は「シュレーディンガーの猫」に代表されるような観測するまで状態が確定しない、複数の可能性の「重ね合わせ」状態となっています。 重ね合わせが破壊された量子は「どこにでもいる」状態から「ここにしかない」状態に変化し、人間の直感に反しない「現実的」な動きをとるようになります。 研究者たちは、宇宙がブラックホールを目のように使って、自分の内側を観測している可能性があると述べています。 宇宙に意識があるかはさておき、宇宙現象そのものが観測者の役割を果たすという考えは非常に先進的なものといえます。 しかし、重力の化け物であるブラックホールのどこに、
ブラックホールは巨大な恒星が自身の重力に耐えきれず崩壊してできる、光すら脱出できないほど超高密度かつ大質量の天体だとされています。ところが、ジョンズ・ホプキンス大学の理論物理学者らが新たに発表した論文で、「ブラックホールだと思われていたものは、実はブラックホールのように見える別の存在かもしれない」と主張しています。 Imaging topological solitons: The microstructure behind the shadow https://doi.org/10.1103/PhysRevD.107.084042 Black Holes Might be Defects in Spacetime - Universe Today https://www.universetoday.com/161291/black-holes-might-be-defects-in-sp
国立天文台や東京大学などの国際共同研究チームは6月3日、11個の超巨大ブラックホールの集団が密集している領域を見つけたと発表した。ここまで密集した超巨大ブラックホールの集団を見つけたのは、今回が初。この集団が偶然生じる確率は、とてつもなく低く、"10の64乗分の1未満"(10^64=1不可思議)の確率という。 超巨大ブラックホールは、周囲のガスや物質を活発に取り込んで、莫大なエネルギーを放ち、明るく輝いている。このような活動を見せるブラックホールは「クエーサー」と呼ばれる。クエーサー間の距離は、最もクエーサーが多かった時代でも、通常は数億光年程度離れていると知られてきた。 今回研究チームは、全天の4分の1をカバーする史上最大級の観測プロジェクト「スローン・デジタル・スカイ・サーベイ」(SDSS)のデータを解析。すばる望遠鏡の超広視野主焦点カメラ(HSC)を使って追観測した。結果、くじら座方
シンガポールの科学誌「Asian Scientist Magazine」が発表した今年の「アジアの科学者100人」に、広島大学大学院で先進理工系科学研究科の助教を務める片山春菜さん(26)が選ばれた。同誌は「アジア最高の科学者たちに光を当てる」として2016年から毎年100人を選出。広島大に在籍する研究者の受賞は初めてという。 片山さんの研究分野は量子情報科学。尾道北高校から15年に広島大総合科学部に進んで物理に関心を持ち、19年に大学院へ。博士号を取った後、22年4月から助教を務めている。 「楽しむこと忘れず」 今回の選出にあたっては、2...
半世紀の夢「回転エネルギー泥棒」の正体半世紀の夢「回転エネルギー泥棒」の正体 / Credit:Canvaブラックホールは強力な重力エンジンのような存在ですが、「そこからエネルギーを取り出せないだろうか?」という問いは古くから物理学者を魅了してきました。 その一つの答えが、英国のロジャー・ペンローズによる1969年の提案です。 ペンローズは回転するブラックホールの周囲で「エルゴ領域」と呼ばれる時空の引きずり込み領域に物体を投げ込むことを考えました。 うまくいけば、物体は二つに分かれ、一方がブラックホールに落ちる際に負のエネルギーを持ち去り、もう一方が追加のエネルギーを得て飛び去る――つまりブラックホールの回転エネルギーの一部を奪い取ることができるはずだ、と予想したのです。 難しそうに思えますが、回転する大きなコマの上にBB弾を落とすと、BB弾にコマの回転力が伝えられて「パチン」と勢いよくは
ブラックホールは、強力な重力により光でさえ飲み込んでしまう天体なので、当然ブラックホールの後ろも観測できないはずです。ところが、この直感に反して「ブラックホールの向こうから放射された光線」が観測されたとの論文が、2021年7月28日に発表されました。論文によるとこの現象は、アインシュタインによって予言されながらもこれまで確認されたことがなかったものとのことです。 Light bending and X-ray echoes from behind a supermassive black hole | Nature https://www.nature.com/articles/s41586-021-03667-0 First detection of light from behind a black hole | Stanford News https://news.stanford.
2つのブラックホールがお互いの周りを回りながら近づく様子を描いた図。このときに重力波を発する。(ILLUSTRATION BY MARK GARLICK, SCIENCE PHOTO LIBRARY) 時間と空間が織りなす巨大な重力波が検出されたことを示す証拠が得られた。その波長は、なんと数光年から数十光年だという。新たに発表された研究によると、このような波長の重力波の存在を示す証拠が見つかったのは初めてで、最大で太陽の100億倍という質量をもつ超巨大ブラックホールどうしの合体によるものではないかと考えられている。今回の発見の詳細は、2023年6月29日付けで学術誌「Astrophysical Journal Letters」に掲載された一連の論文にまとめられている。 この波を観測したのは、「北米ナノヘルツ重力波観測所」(NANOGrav)の研究者グループだ。68個のパルサーと呼ばれる回転
ブラックホールと降着円盤、ジェットの想像図Sophia Dagnello, NRAO/AUI/NSF 強力な重力によって、周囲にあるものを吸い込んでしまう「ブラックホール」。2023年4月、英科学誌「nature」で最新の観測結果が発表され、天文学者が沸いています。 「新しいことが分かっても、また分からないことが出てくる。底なしの謎の天体の研究から、脱出できない状態です」 国内外から100人を超える天文学者が参加した国際共同研究を率いた国立天文台水沢VLBI観測所の秦和弘助教は、このように興奮気味に話します。 国立天文台の記者会見から、何が彼らをそこまで興奮させるのか、研究の最前線を探っていきましょう。 2019年に公開された、地球から5500万光年先にあるM87銀河のブラックホールシャドウの画像。この画像は、史上始めてブラックホールの存在を直接的に捉えたものとして、当時世界中で話題となっ
【▲さんかく 図1: 今回の研究でシミュレーションされた位相欠陥の外観。 (Image Credit: P. Heidmann, et.al.) 】 「ブラックホール」は非常に知名度の高い天体ですが、その存在がカール・シュヴァルツシルトによって最初に予言されたのは1915年です (公表は1916年) 。アルベルト・アインシュタインが一般相対性理論を発表したわずか1か月後に、シュヴァルツシルトは一般相対性理論を解くことでブラックホールに当たる天体が出現することを数学的に証明しました(当時はまだ "Black Hole" という名称は与えられておらず、1964年に初めて使用されました)。 当初は実在が疑われたブラックホールですが、その後の天文学の発展により、ブラックホール以外では説明のつかない天体や天文現象が次々と発見されているため、今日では実在を疑う声はほとんどありません。しかし、ブラックホールは存
ドラゴンボールでパワーアップのための場所といえば「精神と時の部屋」。 セル戦、魔人ブウ戦に備えるため使われてきたこの場所は、「1日で1年分の時間が過ぎる」「重力が地球の10倍」など、さまざまな特徴を持っています。 「自分も、精神と時の部屋に入って修業をしたら悟空たちのように、大幅にパワーアップできるかもしれない......」そのように考えたことがある方は多いと思います。 一見、私たちが住む世界では実現が難しそうに思える「精神と時の部屋」ですが、物理学者の目からはどう映るのでしょうか? 素粒子、宇宙、重力などを専門として研究している国立中央大学教授の太田信義先生にお話を伺いました。 語り手:太田信義先生 大阪大学理学部助教授、近畿大学理工学部理学科教授を経て、2021年4月より国立中央大学(台湾)物理学部客員教授。素粒子論、重力理論(ブラックホール、初期宇宙を含む)を専門とし、日々研究に取り組んでい
ブラックホールが合体するイメージ図/Sakkmesterke/Science Photo Library RF/Getty Images (CNN) 太陽百個分以上の質量を持つブラックホール同士の衝突と合体が観測されたとの研究結果を、国際研究チームが発表した。観測史上最大規模の合体とされる。 米国のレーザー干渉計重力波天文台(LIGO)がルイジアナ州リビングストンとワシントン州ハンフォードで運用する一対の観測装置が、二つのブラックホールの衝突で生じた重力波を検出した。この現象は「GW231123」と名付けられた。 アインシュタインは1915年に相対性理論の中で重力波の存在を予測したが、重力波は極めて微弱なため人間の技術では直接観測できないと考えていた。だが2016年にLIGOが初めてブラックホールの衝突による重力波を観測。貢献した科学者3人は翌年、ノーベル物理学賞を受賞した。 それ以来、L
山下 裕毅 先端テクノロジーの研究を論文ベースで記事にするWebメディア「Seamless/シームレス」を運営。最新の研究情報をX(@shiropen2)にて更新中。 米ペンシルベニア大学などに所属する研究者らが発表した論文「Microscopic Origin of the Entropy of Astrophysical Black Holes」は、ブラックホール内部をモデル化し、それらの状態の数を数え上げる式を導き出し、ブラックホールの総エントロピーを計算した研究報告である。 ▲さんかく論文のトップページ スティーブン・ホーキング氏とヤコブ・ベッケンシュタイン氏は1970年代に、ブラックホールはエントロピーを持つこと、そしてそのエントロピーがブラックホールのホライズンの面積に比例することを発見した。しかし、統計力学の観点から、このエントロピーがブラックホール内部のどのような微視的状態の数に対
量子物理学の法則では、物質の状態が変化してもその「情報」が失われることはなく、変化後の形態に保存されている情報から過去の状態を知ることができます。しかし、巨大な天体が崩壊して形成されるブラックホールにおいては、元の情報が失われてしまう「ブラックホール情報パラドックス」が生じます。このパラドックスについて、イギリス・サセックス大学の物理学教授であるザビエル・カルメット氏らが、ブラックホール情報パラドックスを解決する方法を発見したと報告しました。 Quantum gravitational corrections to particle creation by black holes - ScienceDirect https://doi.org/10.1016/j.physletb.2023.137820 ‘Quantum hair’ could resolve Hawking’s blac
フランスで撮影された天の川銀河(2013年8月13日撮影)。(c)MIGUEL MEDINA / AFP 【4月16日 AFP】天の川銀河(銀河系、Milky Way)でこれまでに観測された中で最大となる恒星ブラックホールが発見されたことが16日、発表された。太陽の33倍の質量があるという。 国立科学研究センター(CNRS)の天文学者はAFPに対し、このブラックホールは欧州宇宙機関(ESA)の宇宙望遠鏡「ガイア(Gaia)」が収集したデータから「偶然」発見され、「ガイアBH3(Gaia BH3)」と名付けられたとパリ天文台(Observatoire de Paris)で語った。わし座の方向にあり、地球からは2000光年離れているという。 恒星ブラックホールは大質量星が寿命を迎えて崩壊する際にできる。超大質量ブラックホールよりも小さい。 ガイアBH3は「休眠状態」のブラックホールでX線を発し
イギリスのダラム大学の研究チームが、これまでに知られている中で最大級のブラックホールと思われる天体を発見したと発表しました。このブラックホールは太陽300億個分以上の質量を持ち、地球から27億光年離れた銀河の中心に存在するとのことです。 Abell 1201: detection of an ultramassive black hole in a strong gravitational lens | Monthly Notices of the Royal Astronomical Society | Oxford Academic https://doi.org/10.1093/mnras/stad587 Light-bending gravity reveals one of the bigg | EurekAlert! https://www.eurekalert.org/new
銀河「SDSS1335+0728」にあるブラックホールに、周囲の物質が吸い込まれて成長するガス円盤を描いた想像図。欧州南天天文台(ESO)提供(2024年6月18日入手)。(c)AFP PHOTO / European Southern Observatory / ESO/M. Kornmesser 【6月19日 AFP】欧州南天天文台(ESO)は18日、「眠っていた」超大質量ブラックホールが「目を覚まし」、銀河の中心部を輝かせる様子を初めて観測したと発表した。 地球から3億光年離れたおとめ座方向にある銀河「SDSS1335+0728」は長年変化が見られなかったが、2019年後半に突然、かつてないほど明るく輝き始めた。銀河の中心には、超大質量ブラックホールがあると考えられている。 国際天文学誌アストロノミー&アストロフィジックス(Astronomy and Astrophysics)に掲載
ブラックホールの新たな側面が示されました。 米国のハワイ大学(University of Hawaii)で行われた2つの研究によって、暗黒エネルギーが銀河中心にある超大質量ブラックホールに詰め込まれている可能性を示唆する、初めての観測データが示されました。 宇宙を膨張させた「暗黒エネルギー」はブラックホール内に溜まっているかもしれないというのです。 一部の理論家たちはデータ解釈について懐疑的な立場をとっていますが、今回の研究が正しい場合、ブラックホールの「中身」や暗黒エネルギーについて大きく理解が進むことになるでしょう。 しかし、観測できないブラックホールの内部に、観測できない暗黒エネルギーが存在するとの結論を、研究者たちはいかにして導き出したのでしょうか? 研究内容を報じる1つ目の論文は2023年2月2日に『The Astrophysical Journal』、2つ目の論文は2023年2
ジェミニ天文台の望遠鏡を使って発見された地球に最も近いブラックホールとその伴星のイメージ画像(International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/Spaceengine/M. Zamani) ジェミニ天文台の望遠鏡を使って発見された地球に最も近いブラックホールとその伴星のイメージ画像(International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/Spaceengine/M. Zamani) 太陽系の縁よりそれほど離れていない奥深い宇宙には、宇宙的にいうところの万物の謎に満ちた闇の中心がある。 先週ある天文学者チームが、地球からわずか1600光年にある休眠状態のブラックホールを見つけたことを発表した。これまでの観測されてきた距離の3分の1の近さだ。 ブラックホ
ブラックホールは巨大な恒星が自身の重力に耐えきれず崩壊してできる、光すら脱出できないほど超高密度かつ大質量の天体だとされています。そんなブラックホールについて、物理学者のジア・ドヴァリ氏とザラ・オスマノフ氏は「進歩した技術を持つ宇宙人は、ブラックホールを量子コンピュータのハードウェアとして使っているかもしれない」と示唆しています。 Black holes as tools for quantum computing by advanced extraterrestrial civilizations | International Journal of Astrobiology | Cambridge Core https://www.cambridge.org/core/journals/international-journal-of-astrobiology/article/blac
「ブラックホール」という単語を知らないという人はほとんどいないでしょう。それほどまでにブラックホールの知名度は高いですが、その分だけ生じる誤解もたくさんあります。誤解は非常に多数あり、中には専門知識が必要なものも多いため、ここでは全てを取り上げることはしませんが、今回はその中でも代表的なものを紹介します。 誤解1:「ブラックホールは時空 (宇宙) に空いた穴や渦である」の真実 「ブラックホールは時空に空いた穴だ」──確かに専門家でも、そんな表現を使うことはあります。しかし、これはあくまで比喩的な表現であることに注意しなければなりません。 ブラックホールの構造は非常にシンプルであり、中心部にブラックホールの全質量が詰まった「特異点」と、それを囲む「事象の地平面」しかありません。詳しくは後述しますが、事象の地平面は膜や霧のような物質的なものではなく、どんなに近くで見ても、表面を表すようなものは
ガジェット全般、サイエンス、宇宙、音楽、モータースポーツetc... 電気・ネットワーク技術者。実績媒体Engadget日本版, Autoblog日本版, Forbes JAPAN他 ハーバード・スミソニアン天体物理学センター(CfA)のAkos Bogdan氏率いる研究チームは、NASAのチャンドラX線観測衛星とジェームズ・ウェッブ宇宙望遠鏡(JWST)を使った観測から、約132億光年もの彼方に超大質量ブラックホールを発見したと発表しました。 このブラックホールは、地球から約35億光年の位置にある、銀河が密集しているAbell 2744と呼ばれるエリアにある、UHZ1と呼ばれる銀河内に発見されました。しかし実際には、UHZ1はAbell 2744のはるか遠い背後、地球から132億光年も離れた場所にあることが、JWSTのデータから示されています。 この遠い銀河からの光と、超巨大ブラックホー
宇宙空間で2つのブラックホールが衝突する様子を描いたイラスト。ブラックホールの衝突によって放射される重力波(時空のさざ波)は、地球上の重力波天文台で検出できる。(Illustration by Mark Garlick, Science Photo Library) 2025年7月10日付けで学術サイト「arXiv.org」に投稿された査読前の論文によると、米国の「レーザー干渉計重力波天文台」(LIGO)が、2つのブラックホールの衝突によって生じた重力波を2023年11月23日に検出した。2つのブラックホールの質量はそれぞれ太陽の103倍と137倍と推定されたが、測定された性質には不確実なところがあり、どちらも太陽の約60〜130倍という「禁じられた」質量の範囲内にある可能性が高いと、英カーディフ大学の物理学者でLIGOチームのメンバーであるマーク・ハンナム氏は言う。(参考記事:「重力波、
高密度で強い重力を持ち、光さえも飲み込んでしまう天体がブラックホールです。そんなブラックホールが宇宙に浮かぶ星を約300年かけて吸収して崩壊させ、超新星爆発を引き起こした可能性があることが調査により示されました。 A transient radio source consistent with a merger-triggered core collapse supernova https://www.science.org/doi/10.1126/science.abg6037 Star Explodes After Black Hole Devours It From the Inside https://www.newsweek.com/star-explodes-black-hole-devours-inside-1625720 天文学者のディロン・ドン氏らは、2017年に観測され
前例のない詳細さで観測された、二つのブラックホールの衝突現象「GW250114」のイメージ図/Aurore Simonnet (SSU/EdEon)/LVK/URI (CNN) 宇宙で起きたブラックホール同士の衝突と合体が、史上最高の精度で新たに観測された。これにより、偉大な物理学者のアルベルト・アインシュタイン博士、ティーブン・ホーキング博士による予言が実証された。 この現象は今年1月、米レーザー干渉計重力波天文台(LIGO)がルイジアナ州リビングストンとワシントン州ハンフォードで運用する一対の装置で観測され、「GW250114」と名付けられた。検出されたのは、ブラックホール同士の衝突で生じる、「重力波」というかすかな時空のさざ波だ。 重力波は、ブラックホールの衝突を地球上から観測する唯一の手段。アインシュタインは1915年に相対性理論の中でその存在を予測したが、極めて微弱なため人間の技
by NASA's Marshall Space Flight Center 人間や地球、夜空の星々などを形作っている通常の物質は、宇宙に存在する物質とエネルギーのうちたった5%以下で、残りはまだ正体がわかっていないダークマターとダークエネルギーで構成されていると考えられています。全宇宙の4分の1を占めるダークマターの正体として有力視されている仮想粒子「アクシオン」の雲が、中性子星という極端な天体の周囲で生成されており、密度が十分に高ければ既存の観測技術で捉えることが可能かもしれないとする仮説が提唱されました。 Phys. Rev. X 14, 041015 (2024) - Axion Clouds around Neutron Stars https://journals.aps.org/prx/abstract/10.1103/PhysRevX.14.041015 Dark matt
強い重力を持ち物質や光を吸い込むことで知られるブラックホールですが、一方でジェット噴射を行っていることでも知られています。なぜブラックホールがジェット噴射を行うのかという理由や原因は定かではありませんが、新たな研究ではこの謎を解く手がかかりとなる「ジェット噴射を撮影した過去最高解像度の画像」が公開されました。 Event Horizon Telescope observations of the jet launching and collimation in Centaurus A | Nature Astronomy https://www.nature.com/articles/s41550-021-01417-w Look: Scientists imaged an intensely powerful force coming from a black hole https://
2017年から実施された、夜空を広く電波波長でスキャンする「VLA Sky Survey」の観測データから、非常に明るい珍しい電波源が発見されました。 天文学者は最初、これが何を映しているのか分かりませんでしたが、追跡観測の結果、驚くべき現象が明らかとなったのです。 カリフォルニア工科大学(caltech)の研究チームは、これがブラックホールあるいは中性子星が星の核に侵入し核融合を破壊することで起こした新しいタイプの超新星爆発だったと特定したのです。 これは理論的には予想されていましたが、実際観測によって確認されたのは初めてのことです。 この研究の詳細は、9月3日付で科学雑誌『Science』に掲載されています。
宇宙空間に存在する超高密度かつ大質量の天体であるブラックホールは、物質はおろか光さえも脱出できないと考えられています。ブラックホールに取り込まれた物質は強力な重力による潮汐(ちょうせき)力でまるでスパゲッティのように細長い形状に引き延ばされる「スパゲッティ化現象」が起こるとされています。そんなスパゲッティ化現象をモナッシュ大学のダネル・プライス氏らの研究チームがスーパーコンピューターを用いてシミュレーションしました。 [2404.09381] Eddington envelopes: The fate of stars on parabolic orbits tidally disrupted by supermassive black holes https://arxiv.org/abs/2404.09381 Watch a star get destroyed by a superm
このコーナーでは、2014年から先端テクノロジーの研究を論文単位で記事にしているWebメディア「Seamless」(シームレス)を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。 X: @shiropen2 ブラジルのリオグランデ・ド・スル大学と英ポーツマス大学に所属する研究者らが発表した論文「Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Horseshoe gravitational lens」は、「コズミック・ホースシュー」(Cosmic Horseshoe)と呼ばれる銀河の中に、太陽の360億倍もの質量を持つ途方もなく巨大なブラックホールを発見した研究報告だ。 コズミック・ホースシューは地球から約50億光年離れた場所にある巨大な銀河。この銀河の特徴は、
かつて、「永遠に思えるブラックホールもやがて質量を失い、最後には蒸発するだろう」とホーキングは予言し、物理学界に衝撃を走らせた。ただ、その観測は長いあいだ困難を極めていた。その新たな可能性を切り拓くのが、「人工ブラックホール」を用いた検証である。 本連載では、その研究の最前線で世界的な注目を集める物理学者の2人、片山春菜氏(広島大学助教)と畠中憲之氏(広島大学教授)にその意義を解説してもらおう。 日本で提唱された「画期的な研究手法」 電気回路上で擬似的なブラックホールを実現するためには、どうしたらいいでしょうか。 擬似的にブラックホールを作るときのポイントは、「場所によって流速が変わるような滝の流れ」を用意することでした。電気回路では、水を流すわけにはいきません。場所によって変わる流れを作るのは、電気回路を伝わる「電磁波」です。電気回路中を電磁波がどのように伝わるのでしょうか。 電気回路の
by NASA Hubble Space Telescope 超高密度の天体であるブラックホールは、天体の一種でありながら非常に強い重力のために光すら脱出できないため、直接的な観測を行うことすら困難です。そんな「宇宙で最も極端な存在」であるブラックホールについて、科学系YouTubeチャンネルのKurzgesagtが特徴的なアニメーションムービーで解説しています。 The Most Extreme Things in the Universe - Ultimate Guide to Black Holes - YouTube ブラックホールは宇宙で最もパワフルかつ極端、それでいて奇妙で複雑な存在でもあります。 Kurzgesagtによると、ブラックホールについて考える前に、まずは空間と時間について整理する必要があるとのこと。宇宙は空間と時間の中で存在していますが、空間と時間は固定されたステ
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く