Individual variation of the genetic response to bisphenol a in human foreskin fibroblast cells derived from cryptorchidism and hypospadias patients
- PMID: 23285176
- PMCID: PMC3532342
- DOI: 10.1371/journal.pone.0052756
Individual variation of the genetic response to bisphenol a in human foreskin fibroblast cells derived from cryptorchidism and hypospadias patients
Abstract
Background/purpose: We hypothesized that polymorphic differences among individuals might cause variations in the effect that environmental endocrine disruptors (EEDs) have on male genital malformations (MGMs). In this study, individual variation in the genetic response to low-dose bisphenol A (BPA) was investigated in human foreskin fibroblast cells (hFFCs) derived from child cryptorchidism (CO) and hypospadias (HS) patients.
Methodology/principal findings: hFFCs were collected from control children without MGMs (n=5) and child CO and HS patients (n=8 and 21, respectively). BPA exposure (10 nM) was found to inhibit matrix metalloproteinase-11 (MMP11) expression in the HS group (0.74-fold, P=0.0034) but not in the control group (0.93-fold, P=0.84) and CO group (0.94-fold, P=0.70). Significantly lower levels of MMP11 expression were observed in the HS group compared with the control group (0.80-fold, P=0.0088) and CO group (0.79-fold, P=0.039) in response to 10 nM BPA. The effect of single-nucleotide polymorphism rs5000770 (G>A), located within the aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) locus, on individual sensitivity to low-dose BPA was investigated in the HS group. A significant difference in neurotensin receptor 1 (NTSR1) expression in response to 10 nM BPA was observed between AA and AG/GG groups (n=6 and 15, respectively. P=0.031). However, no significant difference in ARNT2 expression was observed (P=0.18).
Conclusions/significance: This study advances our understanding of the specificity of low-dose BPA effects on human reproductive health. Our results suggest that genetic variability among individuals affects susceptibility to the effects of EEDs exposure as a potential cause of HS.
Conflict of interest statement
Figures
References
-
- Virtanen HE, Bjerknes R, Cortes D, Jorgensen N, Rajpert-De Meyts E, et al. (2007) Cryptorchidism: classification, prevalence and long-term consequences. Acta Paediatr 96: 611–616. - PubMed
-
- Toppari J, Virtanen HE, Main KM, Skakkebaek NE (2010) Cryptorchidism and hypospadias as a sign of testicular dysgenesis syndrome (TDS): environmental connection. Birth Defects Res A Clin Mol Teratol 88: 910–919. - PubMed
-
- Vidaeff AC, Sever LE (2005) In utero exposure to environmental estrogens and male reproductive health: a systematic review of biological and epidemiologic evidence. Reprod Toxicol 20: 5–20. - PubMed
-
- Carbone P, Giordano F, Nori F, Mantovani A, Taruscio D, et al. (2007) The possible role of endocrine disrupting chemicals in the aetiology of cryptorchidism and hypospadias: a population-based case-control study in rural Sicily. Int J Androl 30: 3–13. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources