Isolation and Characterization of Chloroplast DNA from the Marine Chromophyte, Olisthodiscus luteus: Electron Microscopic Visualization of Isomeric Molecular Forms 1
Jane Aldrich
Rose Ann Cattolico
Present address: Standard Oil of Ohio, Cleveland, Ohio.
Supported by National Science Foundation Grant PCM7624440 to RAC and United States Public Health Grant HD07183 from the NICHD to J. A.
Abstract
Chloroplast DNA (ctDNA) from the marine chromophytic alga, Olisthodiscus luteus, has been isolated using a whole cell lysis method followed by CsCl-Hoechst 33258 dye gradient centrifugation. This DNA, which has a buoyant density of 1.691 grams per cubic centimeter was identified as plastidic in origin by enrichment experiments. Inclusion of the nuclease inhibitor aurintricarboxylic acid in all lysis buffers was mandatory for isolation of high molecular weight DNA. Long linear molecules (40 to 48 micrometers) with considerable internal organization comprised the majority of the ctDNA isolated, whereas supertwisted ctDNA and open circular molecules averaging 46 micrometers were occasionally present. Also observed in this study were folded ctDNA molecules with electron dense centers ("rosettes") and plastid DNA molecules which have a tightly wound "key-ring" center. The ctDNA of Olisthodiscus has a contour length that is median to the size range reported for chlorophytic plants.
A minor component of the total cellular DNA, which originates from a DNase insensitive cellular structure, has a buoyant density of 1.694 grams per cubic centimeter. This DNA consists predominantly of linear molecules, but open circles 11.5 micrometers in length and rare 22-micrometer dimers were also present.
This study represents the first analysis of the extranuclear DNA of a chromophytic alga.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer W., Vinogradj The interaction of closed circular DNA with intercalative dyes. 3. Dependence of the buoyant density upon superhelix density and base composition. J Mol Biol. 1970 Dec 14;54(2):281–298. doi: 10.1016/0022-2836(70)90430-4. [DOI] [PubMed] [Google Scholar]
- Brown R. D., Haselkorn R. The isolation of Euglena gracilis chloroplasts uncontaminated by nuclear DNA. Biochim Biophys Acta. 1972 Jan 18;259(1):1–4. doi: 10.1016/0005-2787(72)90467-4. [DOI] [PubMed] [Google Scholar]
- Cattolico R. A., Boothroyd J. C., Gibbs S. P. Synchronous Growth and Plastid Replication in the Naturally Wall-less Alga Olisthodiscus luteus. Plant Physiol. 1976 Apr;57(4):497–503. doi: 10.1104/pp.57.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cattolico R. A. Variation in Plastid Number: Effect on Chloroplast and Nuclear Deoxyribonucleic Acid Complement in the Unicellular Alga Olisthodiscus luteus. Plant Physiol. 1978 Oct;62(4):558–562. doi: 10.1104/pp.62.4.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cozzarelli N. R. DNA gyrase and the supercoiling of DNA. Science. 1980 Feb 29;207(4434):953–960. doi: 10.1126/science.6243420. [DOI] [PubMed] [Google Scholar]
- Fennewald M., Prevatt W., Meyer R., Shapiro J. Isolation of inc P-2 plasmid DNA from Pseudomonas aeruginosa. Plasmid. 1978 Feb;1(2):164–173. doi: 10.1016/0147-619x(78)90036-7. [DOI] [PubMed] [Google Scholar]
- GIBBS S. P. Nuclear envelope-chloroplast relationships in algae. J Cell Biol. 1962 Sep;14:433–444. doi: 10.1083/jcb.14.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gellert M., Mizuuchi K., O'Dea M. H., Itoh T., Tomizawa J. I. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4772–4776. doi: 10.1073/pnas.74.11.4772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green B. R. Covalently closed minicircular DNA associated with Acetabularia chloroplasts. Biochim Biophys Acta. 1976 Oct 4;447(2):156–166. doi: 10.1016/0005-2787(76)90339-7. [DOI] [PubMed] [Google Scholar]
- Hallick R. B., Chelm B. K., Gray P. W., Orozco E. M., Jr Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation. Nucleic Acids Res. 1977 Sep;4(9):3055–3064. doi: 10.1093/nar/4.9.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrmann R. G., Bohnert H. J., Kowallik K. V., Schmitt J. M. Size, conformation and purity of chloroplast DNA of some higher plants. Biochim Biophys Acta. 1975 Jan 20;378(2):305–317. doi: 10.1016/0005-2787(75)90118-5. [DOI] [PubMed] [Google Scholar]
- Herrmann R. G., Kowallik K. V. Multiple amounts of DNA related to the size of chloroplasts. II. Comparison of electron-microscopic and autoradiographic data. Protoplasma. 1970;69(3):365–372. doi: 10.1007/BF01320301. [DOI] [PubMed] [Google Scholar]
- Herrmann R. G., Possingham J. V. Plastid DNA-the plastome. Results Probl Cell Differ. 1980;10:45–96. doi: 10.1007/978-3-540-38255-3_3. [DOI] [PubMed] [Google Scholar]
- Kavenoff R., Ryder O. A. Electron microscopy of membrane-associated folded chromosomes of Escherichia coli. Chromosoma. 1976 Mar 31;55(1):13–25. doi: 10.1007/BF00288323. [DOI] [PubMed] [Google Scholar]
- Kolodner R., Tewari K. K. The molecular size and conformation of the chloroplast DNA from higher plants. Biochim Biophys Acta. 1975 Sep 1;402(3):372–390. doi: 10.1016/0005-2787(75)90273-7. [DOI] [PubMed] [Google Scholar]
- Kreuzer K. N., Cozzarelli N. R. Formation and resolution of DNA catenanes by DNA gyrase. Cell. 1980 May;20(1):245–254. doi: 10.1016/0092-8674(80)90252-4. [DOI] [PubMed] [Google Scholar]
- Lyman H., Jupp A. S., Larrinua I. Action of Nalidixic Acid on Chloroplast Replication in Euglena gracilis. Plant Physiol. 1975 Feb;55(2):390–392. doi: 10.1104/pp.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manning J. E., Wolstenholme D. R., Ryan R. S., Hunter J. A., Richards O. C. Circular chloroplast DNA from Euglena gracilis. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1169–1173. doi: 10.1073/pnas.68.6.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manuelidis L. A simplified method for preparation of mouse satellite DNA. Anal Biochem. 1977 Apr;78(2):561–568. doi: 10.1016/0003-2697(77)90118-x. [DOI] [PubMed] [Google Scholar]
- Mucke H., Löffelhardt W., Bohnert H. J. Partial characterization of the genome of the 'endosymbiotic' cyanelles from Cyanophora paradoxa. FEBS Lett. 1980 Mar 10;111(2):347–352. doi: 10.1016/0014-5793(80)80824-6. [DOI] [PubMed] [Google Scholar]
- Padmanabhan U., Green B. R. The kinetic complexity of Acetabularia chloroplast DNA. Biochim Biophys Acta. 1978 Nov 21;521(1):67–73. doi: 10.1016/0005-2787(78)90249-6. [DOI] [PubMed] [Google Scholar]
- Pardoll D. M., Vogelstein B., Coffey D. S. A fixed site of DNA replication in eucaryotic cells. Cell. 1980 Feb;19(2):527–536. doi: 10.1016/0092-8674(80)90527-9. [DOI] [PubMed] [Google Scholar]
- Paulson J. R., Laemmli U. K. The structure of histone-depleted metaphase chromosomes. Cell. 1977 Nov;12(3):817–828. doi: 10.1016/0092-8674(77)90280-x. [DOI] [PubMed] [Google Scholar]
- Pettijohn D. E., Hecht R. RNA molecules bound to the folded bacterial genome stabilize DNA folds and segregate domains of supercoiling. Cold Spring Harb Symp Quant Biol. 1974;38:31–41. doi: 10.1101/sqb.1974.038.01.006. [DOI] [PubMed] [Google Scholar]
- Rose R. J. The association of chloroplast DNA with photosynthetic membrane vesicles from spinach chloroplasts. J Cell Sci. 1979 Apr;36:169–183. doi: 10.1242/jcs.36.1.169. [DOI] [PubMed] [Google Scholar]
- Simpson L. Isolation of maxicircle component of kinetoplast DNA from hemoflagellate protozoa. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1585–1588. doi: 10.1073/pnas.76.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Still C. C., Price C. A. Bulk separation of chloroplasts with intact membranes in the zonal centrifuge. Biochim Biophys Acta. 1967 Jun 13;141(1):176–178. doi: 10.1016/0304-4165(67)90257-7. [DOI] [PubMed] [Google Scholar]
- Stüber D., Bujard H. Electron microscopy of DNA: determination of absolute molecular weights and linear density. Mol Gen Genet. 1977 Sep 9;154(3):299–303. doi: 10.1007/BF00571286. [DOI] [PubMed] [Google Scholar]