- Letter
- Published:
Mechanism of odorant adaptation in the olfactory receptor cell
Nature volume 385, pages 725–729 (1997)Cite this article
-
2923 Accesses
-
337 Citations
-
3 Altmetric
Abstract
Adaptation to odorants begins at the level of sensory receptor cells1–5, presumably through modulation of their transduction machinery. The olfactory signal transduction involves the activation of the adenylyl cyclase/cyclic AMP second messenger system which leads to the sequential opening of cAMP-gated channels and Ca2+ -activated chloride ion channels4–7. Several reports of results obtained from in vitro preparations describe the possible molecular mechanisms involved in odorant adaptation; namely, ordorant receptor phosphorylation8,9, activation of phosphodiesterase10, and ion channel regulation11–14. However, it is still unknown whether these putative mechanisms work in the intact olfactory receptor cell. Here we investigate the nature of the adaptational mechanism in intact olfactory cells by using a combination of odorant stimulation and caged cAMP photolysis15 which produces current responses that bypass the early stages of signal transduction (involving the receptor, G protein and adenylyl cyclase). Odorant- and cAMP-induced responses showed the same adaptation in a Ca2+ -dependent manner, indicating that adaptation occurs entirely downstream of the cyclase. Moreover, we show that phosphodiesterase activity remains constant during adaptation and that an affinity change of the cAMP-gated channel for ligands accounts well for our results. We conclude that the principal mechanism underlying odorant adaptation is actually a modulation of the cAMP-gated channel by Ca2+ feedback.
This is a preview of subscription content, access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
An anhydrobiotic cell line expressing odorant receptors shows odorant responses after dry storage
The structural basis of odorant recognition in insect olfactory receptors
Calmodulin regulates the olfactory performance in Drosophila melanogaster
References
Getchell, T. V. & Shepherd, G. M. J. Physiol. (Lond.) 282, 541–560 (1978).
Kurahashi, T. & Shibuya, T. Brain Res. 515, 261–268 (1990).
Firestein, S., Shepherd, G. M. & Werblin, F. S. J. Physiol. (Lond.) 430, 135–158 (1990).
Reed, R. R. Neuron 8, 205–209 (1992).
Breer, H. et al. in Sensory Transduction (eds Corey, D. P. & Roper, S. D.) 93–108 (Rockefeller Univ. Press, New York, 1992).
Kurahashi, T. & Yau, K.-W. Curr. Biol. 4, 256–258 (1994).
Torre, V., Ashmore, J. F., Lamb, T. D. & Menini, A. J. Neurosci. 15, 7757–7768 (1995).
Boekhoff, I. & Breer, H. Proc. Natl Acad. Sci. USA 89, 471–474 (1992).
Boekhoff, I., Schleicher, S., Strotmann, J. & Breer, H. Proc. Natl Acad. Sci. USA 89, 11983–11987 (1992).
Borisy, F. F. et al. J. Neurosci. 12, 915–923 (1992).
Kramer, R. H. & Siegelbaum, S. A. Neuron 9, 897–906 (1992).
Lynch, J. W. & Lindemann, B. J. Gen. Physiol. 103, 87–106 (1994).
Chen, T.-Y. & Yau, K. W. Nature 368, 545–548 (1994).
Balasubramanian, S., Lynch, J. W. & Barry, P. H. J. Membr. Biol. 152, 13–23 (1996).
Nerbonne, J. M., Richard, S., Nargeot, J. & Lester, H. Nature 310, 74–76 (1984).
Zufall, F., Shepherd, G. M. & Firestein, S. Proc. R. Soc. Lond. B 246, 225–230 (1991).
Firestein, S., Picco, C. & Menini, A. J. Physiol. (Lond.) 468, 1–10 (1993).
Lowe, G. & Gold, G. H. Nature 366, 283–286 (1993).
Kurahashi, T. J. Physiol. (Lond.) 430, 355–371 (1990).
Lamb, T. D. & Pugh, E. N. Trends Neurosci. 15, 291–298 (1992).
Hsu, Y.-T. & Molday, R. S. Nature 361, 76–79 (1993).
Koutalos, Y. & Yau, K.-W. Trends Neurosci. 19, 73–81 (1996).
Kawamura, S. & Murakami, M. Nature 349, 420–423 (1991).
Kawamura, S. Nature 362, 855–857 (1993).
Yamagata, K., Goto, K., Kuo, C.-H., Kondo, H. & Miki, N. Neuron 2, 469–476 (1990).
Kawamura, S. et al. J. Biol. Chem. 271, 21359–21364 (1996).
Buck, L. & Axel, R. Cell 65, 175–187 (1991).
Kurahashi, T. J. Physiol. (Lond.) 419, 177–192 (1989).
Nakamura, T. & Gold, G. H. Nature 325, 442–444 (1987).
Kurahashi, T. & Kaneko, A. NeuroReport 2, 5–8 (1991).
Rights and permissions
About this article
Cite this article
Kurahashi, T., Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385, 725–729 (1997). https://doi.org/10.1038/385725a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/385725a0
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
-
Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation
- Kirstin Meyer
- Nicholas C. Lammers
- Orion D. Weiner
Nature Communications (2023)
-
Voltage imaging in the olfactory bulb using transgenic mouse lines expressing the genetically encoded voltage indicator ArcLight
- Jelena Platisa
- Hongkui Zeng
- Douglas A. Storace
Scientific Reports (2022)
-
Salinity-dependent expression of calcium-sensing receptors in Atlantic salmon (Salmo salar) tissues
- S. Jury
- M. Betka
- H. W. Harris
Journal of Comparative Physiology A (2021)
-
The cyclic AMP signaling pathway in the rodent main olfactory system
- Anna Boccaccio
- Anna Menini
- Simone Pifferi
Cell and Tissue Research (2021)
-
Bilateral and unilateral odor processing and odor perception
- Tal Dalal
- Nitin Gupta
- Rafi Haddad
Communications Biology (2020)