- Letter
- Published:
A molecular photoionic AND gate based on fluorescent signalling
Nature volume 364, pages 42–44 (1993)Cite this article
-
4404 Accesses
-
1185 Citations
-
16 Altmetric
Abstract
MOLECULES that perform logic operations are prerequisites for molecular information processing and computation1–11. We12,13 and others14–16 have previously reported receptor molecules that can be considered to perform simple logic operations by coupling ionic bonding or more complex molecular-recognition processes with photonic (fluorescence) signals: in these systems, chemical binding (the 'input') results in a change in fluorescence intensity (the 'output') from the receptor. Here we describe a receptor (molecule (1) in Fig. 1) that operates as a logic device with two input channels: the fluorescence signal depends on whether the molecule binds hydrogen ions, sodium ions or both. The input/output characteristics of this molecular device correspond to those of an AND gate.
This is a preview of subscription content, access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
A framework for multiexcitonic logic
Molecular descriptors for high-throughput virtual screening of fluorescence emitters with inverted singlet-triplet energy gaps
Adsorption of a water-soluble molecular rotor fluorescent probe on hydrophobic surfaces
References
Carter, F. L., Siatkowski, R. E. & Wohltjen, H. (eds) Molecular Electronic Devices (Elsevier, Amsterdam, 1988).
Lehn, J.- M. Angew, Chem. int. Ed. Engl. 27, 89–112 (1988).
Lehn, J.- M. Angew. Chem. int. Ed. Engl. 29, 1304–1319 (1990).
Anelli, P. L. et al. J. Am chem. Soc. 114, 193–218 (1992).
Bryce, M. et al. Chem. Brit. 27, 707–731 (1991).
Chambron, J. C., Heitz, V. & Sauvage, J.- P. J. chem. Soc. chem. Commun., 1131–1133 (1992).
Wasielewski, M. R., O'Neil, M. P., Gosztola, D., Niemczyk, M. P. & Svec, W. A. Pure appl. Chem. 64, 1319–1325 (1992).
Wild, U. P., Bernet, S., Kohler, B. & Renn, A. Pure appl. Chem. 64, 1335–1342 (1992).
Simon, J., Engel, M. K. & Soulie, C. New J. Chem. 16, 287–293 (1992).
Ashton, P. R., Philp, D., Spencer, N. & Stoddart, J. F. J. Chem. Soc. chem. Commun., 1124–1128 (1992).
Ashton, P. R., Johnston, M. R., Stoddart, J. F., Tolley, M. S. & Wheeler, J. W. J. Chem. Soc. chem. Commun., 1128–1131 (1992).
de Silva, A. P., de Silva, S. A., Dissanayake, A. S. & Sandanayake, K. R. A. S. J. Chem. Soc. chem. Commun., 1056–1058 (1989).
de Silva, A. P. & Rupasinghe, R. A. D. D. J. chem. Soc. chem. Commun., 1669–1670 (1985).
Huston, M. E., Akkaya, E. U. & Czarnik, A. W. J. Am. chem. Soc. 111, 8735–8737 (1989).
Hosseini, M. W., Blacker, A. J. & Lehn, J.- M. J. Am. chem. Soc. 112, 3896–3904 (1990).
Van Arman, S. A. & Czarnik, A. W. Supramolec. Chem. 1, 99–101 (1993).
Bissell, R. A. et al. Chem. Soc. Rev. 21, 187–195 (1992).
de Silva, A. P. & Sandanayake, K. R. A. S. J. chem. Soc. chem. Commun. 1183–1185 (1989).
Smith, J. W. in The Chemistry of the Amino Group (ed. Patai, S.) Ch. 4 (Interscience, London, 1968).
Izatt, R. M., Pawlak, K. Bradshaw, J. S. & Bruening, R. L. Chem. Rev. 91, 1721–2085 (1991).
Orrit, M. & Bernard, J. Phys. Rev. Lett. 65, 2716–1719 (1990).
Basche, Th. & Moerner, W. E. Nature 355, 335–337 (1992).
Kugimiya, S. I., Lazrak, T., Blanchard-Desce, M. & Lehn, J.- M. J. chem. Soc. chem. Commun., 1179–1182 (1991).
Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Appl. Phys. Lett. 40, 178–180 (1982).
Binnig, G. & Rohrer, H. Angew. Chem. Int. Edn. Engl. 26, 606–614 (1987).
Frommer, J. Angew. Chem. Int. Edn. Engl. 31, 1289–1328 (1992).
de Silva, A. P., Gunaratne, H. Q. N. & Sandanayake, K. R. A. S. Tetrahedron Lett. 31, 5193–5196 (1990).
Hyde, E. M., Shaw, B. L. & Shepherd, I. J. chem. Soc. Dalton Trans. 1696–1705 (1978).
Perera, K. S. D., thesis, Queen's Univ. of Belfast (1989).
de Silva, A. P. & de Silva, S. A. J. chem. Soc. Commun., 1709–1710 (1986).
Rights and permissions
About this article
Cite this article
de Silva, P., Gunaratne, N. & McCoy, C. A molecular photoionic AND gate based on fluorescent signalling. Nature 364, 42–44 (1993). https://doi.org/10.1038/364042a0
Issue date:
DOI: https://doi.org/10.1038/364042a0
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
-
A framework for multiexcitonic logic
- Rohan J. Hudson
- Thomas S. C. MacDonald
- Dane R. McCamey
Nature Reviews Chemistry (2024)
-
Non-complementary strand commutation as a fundamental alternative for information processing by DNA and gene regulation
- Maxim P. Nikitin
Nature Chemistry (2023)
-
Design, Photochemistry, Logic Gates Behavior and Antibacterial Evaluation of ICT Systems based on 1,8-naphthalimides
- Alaa Sakr
- Nikolai Georgiev
- Vladimir Bojinov
Journal of Fluorescence (2023)
-
Synthetic DNA applications in information technology
- Linda C. Meiser
- Bichlien H. Nguyen
- Robert N. Grass
Nature Communications (2022)
-
Engineering DNA logic systems with non-canonical DNA-nanostructures: basic principles, recent developments and bio-applications
- Daoqing Fan
- Jun Wang
- Shaojun Dong
Science China Chemistry (2022)