Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A molecular photoionic AND gate based on fluorescent signalling

Nature volume 364, pages 42–44 (1993)Cite this article

Abstract

MOLECULES that perform logic operations are prerequisites for molecular information processing and computation1–11. We12,13 and others14–16 have previously reported receptor molecules that can be considered to perform simple logic operations by coupling ionic bonding or more complex molecular-recognition processes with photonic (fluorescence) signals: in these systems, chemical binding (the 'input') results in a change in fluorescence intensity (the 'output') from the receptor. Here we describe a receptor (molecule (1) in Fig. 1) that operates as a logic device with two input channels: the fluorescence signal depends on whether the molecule binds hydrogen ions, sodium ions or both. The input/output characteristics of this molecular device correspond to those of an AND gate.

This is a preview of subscription content, access via your institution

Access options

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carter, F. L., Siatkowski, R. E. & Wohltjen, H. (eds) Molecular Electronic Devices (Elsevier, Amsterdam, 1988).

  2. Lehn, J.- M. Angew, Chem. int. Ed. Engl. 27, 89–112 (1988).

    Article Google Scholar

  3. Lehn, J.- M. Angew. Chem. int. Ed. Engl. 29, 1304–1319 (1990).

    Article Google Scholar

  4. Anelli, P. L. et al. J. Am chem. Soc. 114, 193–218 (1992).

    Article CAS Google Scholar

  5. Bryce, M. et al. Chem. Brit. 27, 707–731 (1991).

    Google Scholar

  6. Chambron, J. C., Heitz, V. & Sauvage, J.- P. J. chem. Soc. chem. Commun., 1131–1133 (1992).

  7. Wasielewski, M. R., O'Neil, M. P., Gosztola, D., Niemczyk, M. P. & Svec, W. A. Pure appl. Chem. 64, 1319–1325 (1992).

    Article CAS Google Scholar

  8. Wild, U. P., Bernet, S., Kohler, B. & Renn, A. Pure appl. Chem. 64, 1335–1342 (1992).

    Article CAS Google Scholar

  9. Simon, J., Engel, M. K. & Soulie, C. New J. Chem. 16, 287–293 (1992).

    CAS Google Scholar

  10. Ashton, P. R., Philp, D., Spencer, N. & Stoddart, J. F. J. Chem. Soc. chem. Commun., 1124–1128 (1992).

  11. Ashton, P. R., Johnston, M. R., Stoddart, J. F., Tolley, M. S. & Wheeler, J. W. J. Chem. Soc. chem. Commun., 1128–1131 (1992).

  12. de Silva, A. P., de Silva, S. A., Dissanayake, A. S. & Sandanayake, K. R. A. S. J. Chem. Soc. chem. Commun., 1056–1058 (1989).

  13. de Silva, A. P. & Rupasinghe, R. A. D. D. J. chem. Soc. chem. Commun., 1669–1670 (1985).

  14. Huston, M. E., Akkaya, E. U. & Czarnik, A. W. J. Am. chem. Soc. 111, 8735–8737 (1989).

    Article CAS Google Scholar

  15. Hosseini, M. W., Blacker, A. J. & Lehn, J.- M. J. Am. chem. Soc. 112, 3896–3904 (1990).

    Article CAS Google Scholar

  16. Van Arman, S. A. & Czarnik, A. W. Supramolec. Chem. 1, 99–101 (1993).

    Article CAS Google Scholar

  17. Bissell, R. A. et al. Chem. Soc. Rev. 21, 187–195 (1992).

    Article CAS Google Scholar

  18. de Silva, A. P. & Sandanayake, K. R. A. S. J. chem. Soc. chem. Commun. 1183–1185 (1989).

  19. Smith, J. W. in The Chemistry of the Amino Group (ed. Patai, S.) Ch. 4 (Interscience, London, 1968).

    Google Scholar

  20. Izatt, R. M., Pawlak, K. Bradshaw, J. S. & Bruening, R. L. Chem. Rev. 91, 1721–2085 (1991).

    Article CAS Google Scholar

  21. Orrit, M. & Bernard, J. Phys. Rev. Lett. 65, 2716–1719 (1990).

    Article ADS CAS Google Scholar

  22. Basche, Th. & Moerner, W. E. Nature 355, 335–337 (1992).

    Article ADS CAS Google Scholar

  23. Kugimiya, S. I., Lazrak, T., Blanchard-Desce, M. & Lehn, J.- M. J. chem. Soc. chem. Commun., 1179–1182 (1991).

  24. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Appl. Phys. Lett. 40, 178–180 (1982).

    Article ADS CAS Google Scholar

  25. Binnig, G. & Rohrer, H. Angew. Chem. Int. Edn. Engl. 26, 606–614 (1987).

    Article Google Scholar

  26. Frommer, J. Angew. Chem. Int. Edn. Engl. 31, 1289–1328 (1992).

    Google Scholar

  27. de Silva, A. P., Gunaratne, H. Q. N. & Sandanayake, K. R. A. S. Tetrahedron Lett. 31, 5193–5196 (1990).

    Article Google Scholar

  28. Hyde, E. M., Shaw, B. L. & Shepherd, I. J. chem. Soc. Dalton Trans. 1696–1705 (1978).

  29. Perera, K. S. D., thesis, Queen's Univ. of Belfast (1989).

  30. de Silva, A. P. & de Silva, S. A. J. chem. Soc. Commun., 1709–1710 (1986).

Download references

Author information

Authors and Affiliations

  1. School of Chemistry, Queen's University, Belfast, BT9 SAG, UK

    Prasanna A. de Silva, Nimal H. Q. Gunaratne & Colin P. McCoy

Authors
  1. Prasanna A. de Silva
  2. Nimal H. Q. Gunaratne
  3. Colin P. McCoy

About this article

Cite this article

de Silva, P., Gunaratne, N. & McCoy, C. A molecular photoionic AND gate based on fluorescent signalling. Nature 364, 42–44 (1993). https://doi.org/10.1038/364042a0

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/364042a0

This article is cited by

Search

Advanced search

Quick links

[画像:Nature Briefing]

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing

AltStyle によって変換されたページ (->オリジナル) /