Summary
The object of this project is to demonstrate that formalized mathematical theories can, like modern software, be built out of components. By components we mean modules that comprise both the static (objects and facts) and dynamic (proof and computation methods) contents of theories. We propose to develop a general platform for mathematical components, based on the Coq "Ssreflect" extension that was used to carry out the formalization of the Four Colour Theorem. We would validate the platform on two significant developments: a theory of efficient arithmetic, and the proof of the Odd Order theorem. The former could be used in the resolution of several outstanding computer proof challenges, among them the Kepler Conjecture, and the latter could become the first step in a new major challenge: the classification of finite simple groups.
Current state of the project
The formal proof of the Odd Order theorem has been completed on September 20th, 2012. Read more here.
Resources
Download sources, browse documentation, subscribe to the users’ mailing list here.
2016
Reports
2015
Conference papers
2014
Journal articles
Conference papers
2013
Conference papers
Books
2012
Journal articles
Conference papers
Reports
2011
Preprints, Working Papers, …
2010
Journal articles
Conference papers
2009
Conference papers
2007
Reports
2019
Communication dans un congrès
2016
Rapport
2015
Communication dans un congrès
2014
Article dans une revue
Communication dans un congrès
Rapport
2013
Communication dans un congrès
Ouvrage (y compris édition critique et traduction)
2012
Article dans une revue
Communication dans un congrès
Rapport
Thèse
2011
Communication dans un congrès
Thèse
Pré-publication, Document de travail
2010
Article dans une revue
Communication dans un congrès
Pré-publication, Document de travail
2009
Article dans une revue
Communication dans un congrès
Rapport
2008
Communication dans un congrès
2007
Rapport
Download sources, browse documentation, subscribe to the users’ mailing list here.