(追記) (追記ここまで)
Alternating Series Test
A convergence test for alternating series.
Consider the following alternating series (where an > 0 for all n) and/or its equivalents:
\[\sum\limits_{k = 1}^\infty {{{\left( { - 1} \right)}^{k + 1}}{a_k}} = {a_1} - {a_2} + {a_3} - {a_4} + \cdots \]
The series converges if the following conditions are met.
1. an ≥ an +1 for all n ≥ N, where N ≥ 1, and
2. \(\mathop {\lim }\limits_{n \to \infty } {a_n} = 0\)