Expansions of the Logarithm Function
Function
Summation Expansion
Comments
ln (x)
=sum (n=1..inf)
(x-1)n
n
= (x-1) - (1/2)(x-1)
2 + (1/3)(x-1)
3 + (1/4)(x-1)
4 + ...
Taylor Series Centered at 1
(0 < x <=2)
ln (x)
=sum (n=1..inf)
((x-1) / x)n
n
= (x-1)/x + (1/2) ((x-1) / x)
2 + (1/3) ((x-1) / x)
3
+ (1/4) ((x-1) / x)
4 + ...
(x> 1/2)
ln (x)
=ln(a)+sum (n=1..inf)
(-1)n-1(x-a)n
n an
= ln(a) + (x-a) / a - (x-a)
2 / 2a
2 + (x-a)
3
/ 3a
3 - (x-a)
4 / 4a
4 + ...
Taylor Series
(0 < x <= 2a)
ln (x)
=2sum (n=1..inf)
((x-1)/(x+1))(2n-1)
(2n-1)
= 2 [ (x-1)/(x+1) + (1/3)( (x-1)/(x+1) )
3 + (1/5)
( (x-1)/(x+1) )
5 + (1/7) ( (x-1)/(x+1) )
7 + ... ]
(x> 0)
Expansions Which Have Logarithm-Based Equivalents
Summantion Expansion
Equivalent Value
Comments
sum (n=1..inf)
x n
n
= x + (1/2)x
2 +(1/3)x
3 + (1/4)x
4
+ ...
= - ln (x + 1)
(-1 < x <= 1)
sum (n=1..inf)
(-1)n xn
n
= - x + (1/2)x
2 - (1/3)x
3 + (1/4)x
4
+ ...
= - ln(x)
(-1 < x <= 1)
sum (n=1..inf)
x2n-1
2n-1
= x + (1/3)x
3 + (1/ 5)x
5 + (1/7)x
7
+ ...
= ln ( (1+x)/(1-x) )
2
(-1 < x < 1)