\documentclass[12pt]{article} \usepackage{fancyhdr,fancybox,amssymb,epsfig, amsmath, latexsym} \usepackage[all]{xy} \usepackage{tikz} \usetikzlibrary{arrows} \usetikzlibrary{decorations.markings} \usetikzlibrary{decorations.pathreplacing} \usetikzlibrary{patterns} \usetikzlibrary{shapes.geometric} %\usepackage{tikz-3dplot} \usepackage{tkz-graph} \usepackage{tikz-cd} \usepackage{enumerate} \topmargin=-.5in \headsep=0.2in \oddsidemargin=0in \textwidth=6.7in \textheight=9.2in \footskip=.5in % Useful math macros \def\ds{\displaystyle} \def\bold{\bm} % Change ``bm'' to ''mathbf'' for upright boldface. \newcommand{\vv}[2]{\begin{bmatrix} #1 \\ #2 \end{bmatrix}} \newcommand{\vvv}[3]{\begin{bmatrix} #1 \\ #2 \\ #3 \end{bmatrix}} \newcommand{\vvvv}[4]{\begin{bmatrix} #1 \\ #2 \\ #3 \\ #4 \end{bmatrix}} \newcommand{\vvvvv}[5]{\begin{bmatrix} #1 \\ #2 \\ #3 \\ #4 \\ #5 \end{bmatrix}} \def\<{\langle} \def\>{\rangle} \newcommand{\ceil}[1] {\left\lceil #1 \right\rceil} \newcommand{\floor}[1] {\left\lfloor #1 \right\rfloor} \def\normal{\lhd} \def\normaleq{\unlhd} \def\nnormal{\ntriangleleft} \def\nnormaleq{\ntrianglelefteq} \def\Dot{\bm{.}} %\def\subgroup{\leqslant} %\def\nsubgroup{\nleqslant} %\def\normal{\leqslant} %\def\nnormal{\nleqslant} \newcommand{\rddots}{\rotatebox{90}{$\ddots$}} \def\setmin{-} \def\Sum{\sum\limits} \def\Prod{\prod\limits} \def\Cap{\mathop\cap\limits} \def\Cup{\mathop\cup\limits} \def\Times{\mathop\times\limits} \def\Oplus{\mathop\oplus\limits} \def\Lim{\mathop\lim\limits} \def\And{\wedge} \def\Or{\vee} \def\Not{\neg} \def\longto{\longrightarrow} \def\into{\hookrightarrow} \def\longinto{\longhookrightarrow} \def\A{\mathbb{A}} \def\C{\mathbb{C}} \def\F{\mathbb{F}} \def\HH{\mathbb{H}} \def\N{\mathbb{N}} \def\Q{\mathbb{Q}} \def\R{\mathbb{R}} \def\Z{\mathbb{Z}} \DeclareMathOperator{\Id}{Id} \DeclareMathOperator{\Lcm}{lcm} \DeclareMathOperator{\del}{\nabla} \DeclareMathOperator{\Trace}{tr} \DeclareMathOperator{\Span}{Span} \DeclareMathOperator{\Image}{Im} \DeclareMathOperator\Perm{Perm} \DeclareMathOperator\Char{char} \DeclareMathOperator\Aut{Aut} \DeclareMathOperator\Inn{Inn} \DeclareMathOperator\Out{Out} \DeclareMathOperator\Orb{Orb} \DeclareMathOperator\Stab{Stab} \DeclareMathOperator\Fix{Fix} \DeclareMathOperator\Syl{Syl} \DeclareMathOperator\Pre{Pre} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Sym{Sym} \DeclareMathOperator\Mat{Mat} \DeclareMathOperator{\cl}{cl} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator\PGL{PGL} \DeclareMathOperator\PSL{PSL} \DeclareMathOperator\PSU{PSU} \DeclareMathOperator\PSP{PsP} \DeclareMathOperator\Heis{Heis} \DeclareMathOperator\Dic{Dic} \DeclareMathOperator\Mod{Mod} \DeclareMathOperator\Gal{Gal} \DeclareMathOperator\Deg{Deg} \DeclareMathOperator\Rect{\mathbf{Rect}} \DeclareMathOperator\Tri{\mathbf{Tri}} \DeclareMathOperator\Frieze{\mathbf{Frz}} \DeclareMathOperator\Coin{\mathbf{Coin}} \DeclareMathOperator\BOX{\mathbf{Box}} \DeclareMathOperator\Light{\mathbf{Light}} \DeclareMathOperator\Sq{\mathbf{Sq}} % Colors \usepackage{xcolor} \usepackage{color} \definecolor{darkblue}{rgb}{0, 0, .6} \definecolor{grey}{rgb}{.7, .7, .7} %\hypersetup{colorlinks=true,linkcolor=darkblue,anchorcolor=darkblue, % citecolor=darkblue,pagecolor=darkblue,urlcolor=darkblue, % pdftitle={},pdfauthor={} %} %% THIS CAUSES COMPILER ERROR \colorlet{lightred}{red!30!white} \colorlet{lightblue}{blue!30!white} \colorlet{lightyellow}{yellow!30!white} \colorlet{keylime}{green!10!white} \colorlet{darkgreen}{green!50!black} \colorlet{midgreen}{green!70!black} \colorlet{lightgreen}{darkgreen!30!white} \colorlet{lightpurple}{violet!60!white} \colorlet{darkgrey}{black!70} \colorlet{midgrey}{black!50} \definecolor{Red}{rgb}{.9,0,0} \definecolor{Blue}{rgb}{0,0,.9} \definecolor{Green}{rgb}{0,.9,0} \definecolor{Purple}{HTML}{D287FF} \definecolor{conj-purple}{HTML}{E4B7FF} \definecolor{conj-orange}{HTML}{FFD4B7} \colorlet{lred}{red!50!white} \definecolor{lblue}{rgb}{0.60, 0.75, 1} \colorlet{lgreen}{green!40!white} \colorlet{lyellow}{yellow!30!white} %\definecolor{lpurple}{rgb}{0.6 0.35 0.8} \definecolor{lpurple}{rgb}{0.7 0.45 0.9} \colorlet{lorange}{orange!50!white} \definecolor{lightgrey}{rgb}{.85, .85, .85} \definecolor{faded}{rgb}{.75,.75,.75} \definecolor{midgrey}{rgb}{.5,.5,.5} %\definecolor{midgrey}{rgb}{.35, .35, .35} %\definecolor{amethyst}{rgb}{0.6 0.4 0.8} \definecolor{amethyst}{rgb}{0.54 0.17 0.89} \definecolor{amber}{rgb}{1.0 0.49 0.0} % COLORS FOR MULTIPLICATION TABLES \colorlet{tred}{red!70!white} \colorlet{tblue}{blue!60!white} %(higher number is more faded) \colorlet{tgreen}{green!75!black} %(higher number is brighter) \colorlet{tyellow}{yellow!60!white} \colorlet{tlime}{green!80!white} \colorlet{tpink}{pink} \colorlet{tpurple}{lpurple} \colorlet{torange}{orange} \colorlet{lightestblue}{blue!15!white} \colorlet{lightestred}{red!15!white} \newcommand*{\n}{5} % counter for Cayley tables %% CAYLEY DIAGRAM GLOBAL DEFAULTS \tikzstyle{v} = [circle, draw, fill=lightgrey,inner sep=0pt, minimum size=6mm] \tikzstyle{r} = [draw, very thick, Red, -stealth] % Red ---> \tikzstyle{b} = [draw, very thick, Blue, -stealth] % Blue ---> \tikzstyle{g} = [draw, very thick, darkgreen, -stealth] % Green ---> \tikzstyle{p} = [draw, very thick, amethyst, -stealth] % Purple ---> \tikzstyle{rr} = [draw, very thick, Red] % Red ---- \tikzstyle{bb} = [draw, very thick, Blue] % Blue ---- \tikzstyle{gg} = [draw, very thick, darkgreen] % Green ---- \tikzstyle{pp} = [draw, very thick, amethyst] % Purple ---- \tikzstyle{oo} = [draw, very thick, orange] %% Orange ---- \tikzstyle{R} = [draw, very thick, Red, -stealth'] % Red ---> \tikzstyle{B} = [draw, very thick, Blue, -stealth'] % Blue ---> \tikzstyle{G} = [draw, very thick, darkgreen, -stealth'] % Green ---> \tikzset{r/.style={draw, very thick, Red, -stealth}} % Red ---> \tikzset{R/.style={draw, very thick, Red, -stealth'}} % Red ---> \tikzset{v/.style={circle, draw, fill=lightgrey,inner sep=0pt, minimum size=6mm}} \renewcommand\labelitemi{\rule[0.12em]{0.4em}{0.4em}} \renewcommand\labelitemii{\normalfont\bfseries \rule[0.15em]{0.3em}{0.3em}} \renewcommand\labelitemiii{\textasteriskcentered} \renewcommand\labelitemiv{\textperiodcentered} \renewcommand{\footrulewidth}{1pt} \newenvironment{proof}[1][Proof.]{\smallskip\begin{trivlist} \item[\hskip \labelsep {\sffamily #1}]}{\qed\end{trivlist}\bigskip} \newenvironment{sol}[1][Solution.]{\smallskip\begin{trivlist} \item[\hskip \labelsep {\sffamily #1}]}{\qed\end{trivlist}\bigskip} \newenvironment{fminipage}% {\setlength{\fboxsep}{15pt}\begin{Sbox}\begin{minipage}}% {\end{minipage}\end{Sbox}\fbox{\TheSbox}} \newcommand{\qed}{\hfill \ensuremath{\Box}} \newcommand{\disp}{\displaystyle} \pagestyle{fancy} \lhead{{\sf Homework 2 $|$ Due February 3 (Friday) }} \rhead{\thepage} \cfoot{{\sf Math 4130/6130 $|$ Visual Algebra $|$ Spring 2023 $|$ M.~Macauley}} \begin{document} %$\;$ \vspace{-4mm} \begin{enumerate} %%-------------------------------------------------------------------- \item A picture illustrating the quadratic integers $R_{-5}=\Z[\sqrt{-5}]=\big\{a+b\sqrt{-5}\mid a,b\in\Z\big\}$ as a subring of $\C$ is shown below, with the primes in black, and non-prime irreducibles colored. %% R_{-5} \[ \begin{tikzpicture}[scale=.6] \tikzstyle{p} = [circle, draw, fill=black,inner sep=0pt, minimum size=1.5mm] \tikzstyle{i} = [circle, draw, red,fill=red,inner sep=0pt, minimum size=1.5mm] \tikzstyle{c} = [circle, draw, Purple,fill=Purple,inner sep=0pt, minimum size=1.5mm] %% \draw [lightestblue!40,fill=lightestblue!40] (0:0) -- (11.35,0) -- (11.35,11.35) -- (0,11.35) -- cycle; \draw [lightestred!30,fill=lightestred!30] (0:0) -- (-11.35,0) -- (-11.35,11.35) -- (0,11.35) -- cycle; \draw [lightestblue!40,fill=lightestblue!40] (0:0) -- (-11.35,0) -- (-11.35,-11.35) -- (0,-11.35) -- cycle; \draw [lightestred!30,fill=lightestred!30] (0:0) -- (11.35,0) -- (11.35,-11.35) -- (0,-11.35) -- cycle; \foreach \r in {1,...,11} { \draw[faded] (\r,-11.35) -- (\r,11.35); \draw[faded] (-\r,-11.35) -- (-\r,11.35); } \foreach \r in {1,...,5} { \draw[faded] (-11.35,2.236*\r) -- (11.35,2.236*\r); \draw[faded] (-11.35,-2.236*\r) -- (11.35,-2.236*\r); } %% \draw (-11.35,0) -- (11.35,0); \draw (0,-11.35) -- (0,11.35); %% %% \draw [lightestred] (0,0) circle (3cm); \draw [lightestred] (0,0) circle (4.583cm); \draw [lightestred] (0,0) circle (7cm); \draw [lightestred] (0,0) circle (8.307cm); \draw [lightestred] (0,0) circle (11.358cm); \draw [lightestred,domain=17.08:72.92] plot ({11.874*cos(\x)}, {11.874*sin(\x)}); \draw [lightestred,domain=-17.08:-72.92] plot ({11.874*cos(\x)}, {11.874*sin(\x)}); \draw [lightestred,domain=162.92:107.08] plot ({11.874*cos(\x)}, {11.874*sin(\x)}); \draw [lightestred,domain=-162.92:-107.08] plot ({11.874*cos(\x)}, {11.874*sin(\x)}); \draw [lightestred,domain=26.56:63.44] plot ({12.689*cos(\x)}, {12.689*sin(\x)}); \draw [lightestred,domain=-26.56:-63.44] plot ({12.689*cos(\x)}, {12.689*sin(\x)}); \draw [lightestred,domain=153.44:116.56] plot ({12.689*cos(\x)}, {12.689*sin(\x)}); \draw [lightestred,domain=-153.44:-116.56] plot ({12.689*cos(\x)}, {12.689*sin(\x)}); %% \draw [lightestred,domain=38.81:53.19] plot ({14.177*cos(\x)}, {14.177*sin(\x)}); \draw [lightestred,domain=-38.81:-53.19] plot ({14.177*cos(\x)}, {14.177*sin(\x)}); \draw [lightestred,domain=143.19:126.81] plot ({14.177*cos(\x)}, {14.177*sin(\x)}); \draw [lightestred,domain=-143.19:-126.81] plot ({14.177*cos(\x)}, {14.177*sin(\x)}); %% %\draw [lightestred] (0,0) circle (2cm); %% 1st quadrant \node [p] at (2,0) {}; %% exceptional ? \node [i] at (3,0) {}; %% norm = 9=3*3 \node [i] at (7,0) {}; %% norm = 49=7*7 \node [p] at (11,0) {}; %% 11 (mod 20) \node [p] at (0,1*2.236) {}; %% exceptional ? \node [c] at (1,1*2.236) {}; %% norm = 6=2*3 \node [i] at (2,1*2.236) {}; %% norm = 9=3*3 \node [c] at (3,1*2.236) {}; %% norm = 14=2*7 \node [i] at (4,1*2.236) {}; %% norm = 21=3*7 \node [p] at (6,1*2.236) {}; %% norm = 41 (prime) \node [i] at (8,1*2.236) {}; %% norm = 69=3*23 \node [c] at (9,1*2.236) {}; %% norm = 86=2*43 \node [i] at (1,2*2.236) {}; %% norm = 21=3*7 \node [p] at (3,2*2.236) {}; %% norm = 29 (prime) \node [i] at (7,2*2.236) {}; %% norm = 3*23 \node [p] at (9,2*2.236) {}; %% norm = 101 (prime) \node [i] at (11,2*2.236) {}; %% norm = 141=3*47 \node [c] at (1,3*2.236) {}; %% norm = 46=2*23 \node [i] at (2,3*2.236) {}; %% norm = 49=7*7 \node [p] at (4,3*2.236) {}; %% norm = 61 (prime) \node [c] at (7,3*2.236) {}; %% norm = 94=2*47 \node [p] at (8,3*2.236) {}; %% norm = 109 (prime) \node [c] at (11,3*2.236) {}; %% norm = 166=2*83 \node [p] at (3,4*2.236) {}; %% norm = 89 (prime) \node [i] at (7,4*2.236) {}; %% norm = 129=3*43 \node [i] at (9,4*2.236) {}; %% norm = 161=7*23 \node [i] at (11,4*2.236) {}; %% norm = 201=3*67 \node [i] at (9,4*2.236) {}; %% norm = 161=7*23 \node [i] at (2,5*2.236) {}; %% norm = 129=3*43 \node [c] at (3,5*2.236) {}; %% norm = 134=2*67 \node [i] at (4,5*2.236) {}; %% norm = 141=3*47 \node [i] at (6,5*2.236) {}; %% norm = 161=7*23 \node [c] at (9,5*2.236) {}; %% norm = 206=2*103 %% %% 2nd quadrant \node [p] at (-2,0) {}; %% exceptional ? \node [i] at (-3,0) {}; %% norm = 9=3*3 \node [i] at (-7,0) {}; %% norm = 49=7*7 \node [p] at (-11,0) {}; %% 11 (mod 20) %\node [p] at (0,1*2.236) {}; %% exceptional ? \node [c] at (-1,1*2.236) {}; %% norm = 6=2*3 \node [i] at (-2,1*2.236) {}; %% norm = 9=3*3 \node [c] at (-3,1*2.236) {}; %% norm = 14=2*7 \node [i] at (-4,1*2.236) {}; %% norm = 21=3*7 \node [p] at (-6,1*2.236) {}; %% norm = 41 (prime) \node [i] at (-8,1*2.236) {}; %% norm = 69=3*23 \node [c] at (-9,1*2.236) {}; %% norm = 86=2*43 \node [i] at (-1,2*2.236) {}; %% norm = 21=3*7 \node [p] at (-3,2*2.236) {}; %% norm = 29 (prime) \node [i] at (-7,2*2.236) {}; %% norm = 3*23 \node [p] at (-9,2*2.236) {}; %% norm = 101 (prime) \node [i] at (-11,2*2.236) {}; %% norm = 141=3*47 \node [c] at (-1,3*2.236) {}; %% norm = 46=2*23 \node [i] at (-2,3*2.236) {}; %% norm = 49=7*7 \node [p] at (-4,3*2.236) {}; %% norm = 61 (prime) \node [c] at (-7,3*2.236) {}; %% norm = 94=2*47 \node [p] at (-8,3*2.236) {}; %% norm = 109 (prime) \node [c] at (-11,3*2.236) {}; %% norm = 166=2*83 \node [p] at (-3,4*2.236) {}; %% norm = 89 (prime) \node [i] at (-7,4*2.236) {}; %% norm = 129=3*43 \node [i] at (-9,4*2.236) {}; %% norm = 161=7*23 \node [i] at (-11,4*2.236) {}; %% norm = 201=3*67 \node [i] at (-9,4*2.236) {}; %% norm = 161=7*23 \node [i] at (-2,5*2.236) {}; %% norm = 129=3*43 \node [c] at (-3,5*2.236) {}; %% norm = 134=2*67 \node [i] at (-4,5*2.236) {}; %% norm = 141=3*47 \node [i] at (-6,5*2.236) {}; %% norm = 161=7*23 \node [c] at (-9,5*2.236) {}; %% norm = 206=2*103 %% 4th quadrant %\node [p] at (2,0) {}; %% exceptional ? %\node [i] at (3,0) {}; %% norm = 9=3*3 %\node [i] at (7,0) {}; %% norm = 49=7*7 %\node [p] at (11,0) {}; %% 11 (mod 20) \node [p] at (0,-1*2.236) {}; %% exceptional ? \node [c] at (1,-1*2.236) {}; %% norm = 6=2*3 \node [i] at (2,-1*2.236) {}; %% norm = 9=3*3 \node [c] at (3,-1*2.236) {}; %% norm = 14=2*7 \node [i] at (4,-1*2.236) {}; %% norm = 21=3*7 \node [p] at (6,-1*2.236) {}; %% norm = 41 (prime) \node [i] at (8,-1*2.236) {}; %% norm = 69=3*23 \node [c] at (9,-1*2.236) {}; %% norm = 86=2*43 \node [i] at (1,-2*2.236) {}; %% norm = 21=3*7 \node [p] at (3,-2*2.236) {}; %% norm = 29 (prime) \node [i] at (7,-2*2.236) {}; %% norm = 3*23 \node [p] at (9,-2*2.236) {}; %% norm = 101 (prime) \node [i] at (11,-2*2.236) {}; %% norm = 141=3*47 \node [c] at (1,-3*2.236) {}; %% norm = 46=2*23 \node [i] at (2,-3*2.236) {}; %% norm = 49=7*7 \node [p] at (4,-3*2.236) {}; %% norm = 61 (prime) \node [c] at (7,-3*2.236) {}; %% norm = 94=2*47 \node [p] at (8,-3*2.236) {}; %% norm = 109 (prime) \node [c] at (11,-3*2.236) {}; %% norm = 166=2*83 \node [p] at (3,-4*2.236) {}; %% norm = 89 (prime) \node [i] at (7,-4*2.236) {}; %% norm = 129=3*43 \node [i] at (9,-4*2.236) {}; %% norm = 161=7*23 \node [i] at (11,-4*2.236) {}; %% norm = 201=3*67 \node [i] at (9,-4*2.236) {}; %% norm = 161=7*23 \node [i] at (2,-5*2.236) {}; %% norm = 129=3*43 \node [c] at (3,-5*2.236) {}; %% norm = 134=2*67 \node [i] at (4,-5*2.236) {}; %% norm = 141=3*47 \node [i] at (6,-5*2.236) {}; %% norm = 161=7*23 \node [c] at (9,-5*2.236) {}; %% norm = 206=2*103 %% %% 3rd quadrant %\node [p] at (-2,0) {}; %% exceptional ? %\node [i] at (-3,0) {}; %% norm = 9=3*3 %\node [i] at (-7,0) {}; %% norm = 49=7*7 %\node [p] at (-11,0) {}; %% 11 (mod 20) %\node [p] at (0,1*2.236) {}; %% exceptional ? \node [c] at (-1,-1*2.236) {}; %% norm = 6=2*3 \node [i] at (-2,-1*2.236) {}; %% norm = 9=3*3 \node [c] at (-3,-1*2.236) {}; %% norm = 14=2*7 \node [i] at (-4,-1*2.236) {}; %% norm = 21=3*7 \node [p] at (-6,-1*2.236) {}; %% norm = 41 (prime) \node [i] at (-8,-1*2.236) {}; %% norm = 69=3*23 \node [c] at (-9,-1*2.236) {}; %% norm = 86=2*43 \node [i] at (-1,-2*2.236) {}; %% norm = 21=3*7 \node [p] at (-3,-2*2.236) {}; %% norm = 29 (prime) \node [i] at (-7,-2*2.236) {}; %% norm = 3*23 \node [p] at (-9,-2*2.236) {}; %% norm = 101 (prime) \node [i] at (-11,-2*2.236) {}; %% norm = 141=3*47 \node [c] at (-1,-3*2.236) {}; %% norm = 46=2*23 \node [i] at (-2,-3*2.236) {}; %% norm = 49=7*7 \node [p] at (-4,-3*2.236) {}; %% norm = 61 (prime) \node [c] at (-7,-3*2.236) {}; %% norm = 94=2*47 \node [p] at (-8,-3*2.236) {}; %% norm = 109 (prime) \node [c] at (-11,-3*2.236) {}; %% norm = 166=2*83 \node [p] at (-3,-4*2.236) {}; %% norm = 89 (prime) \node [i] at (-7,-4*2.236) {}; %% norm = 129=3*43 \node [i] at (-9,-4*2.236) {}; %% norm = 161=7*23 \node [i] at (-11,-4*2.236) {}; %% norm = 201=3*67 \node [i] at (-9,-4*2.236) {}; %% norm = 161=7*23 \node [i] at (-2,-5*2.236) {}; %% norm = 129=3*43 \node [c] at (-3,-5*2.236) {}; %% norm = 134=2*67 \node [i] at (-4,-5*2.236) {}; %% norm = 141=3*47 \node [i] at (-6,-5*2.236) {}; %% norm = 161=7*23 \node [c] at (-9,-5*2.236) {}; %% norm = 206=2*103 %% \draw [faded] (0,0) circle (1cm); \node [p,fill=white] at (1,0) {}; \node [p,fill=white] at (-1,0) {}; %% \draw [white,fill=white] (-7,11.35) rectangle (7,11.4); %% need to change \draw [white,fill=white] (-7,-11.35) rectangle (7,-11.4); \draw [white,fill=white] (-11.35,-7) rectangle (-11.4,7); \draw [white,fill=white] (11.35,-7) rectangle (11.4,7); %% \end{tikzpicture} \] \begin{enumerate} \item Create an analogous picture for the ring $R_{-6}=\Z[\sqrt{-6}]$. First make a blank diagram with the norms of the quadratic integers labeled at each correponding lattice point. \item Find primes $p\in\Z$ that in $R_{-6}$ are inert, split (both reducible and irreducible), and ramified. Illustrate this with subring lattices. Examples for $R_{-5}$ are shown below. \[ \hspace*{-5mm} \begin{tikzpicture}[scale=1.5,yscale=1.2] %\begin{tikzpicture}[scale=.9,yscale=1.4,xscale=1.25] \tikzstyle{every node}=[font=\small] \begin{scope}[shift={(0,0)}] \node[Blue] (R) at (0,2) {$\Z[\sqrt{-5}]$}; \node[Red] (Z) at (0,1) {$\Z$}; \node[Blue] (11) at (0,0) {$(11)$}; \draw (11) to (Z); \draw (Z) to (R); \end{scope} %% \begin{scope}[shift={(2.35,0)}] \node[Blue] (R) at (0,2) {$\Z[\sqrt{-5}]$}; \node[Blue] (1-6root-5) at (-1,1) {$(3\!-\!2\sqrt{-5})$}; \node[Red] (Z) at (0,1) {$\Z$}; \node[Blue] (1+6root-5) at (1,1) {$(3\!+\!2\sqrt{-5})$}; \node[Blue] (11) at (0,0) {$(29)$}; \draw (11) to (Z); \draw (Z) to (R); \draw (11) to (1-6root-5); \draw (11) to (1+6root-5); \draw (R) to (1-6root-5); \draw (R) to (1+6root-5); \end{scope} %% \begin{scope}[shift={(5.95,0)}] \node[Blue] (R) at (0,2) {$\Z[\sqrt{-5}]$}; \node[Blue] (1-6root-5) at (-1,1) {$(3,2\!-\!\sqrt{-5})$}; \node[Red] (Z) at (0,1) {$\Z$}; \node[Blue] (1+6root-5) at (1,1) {$(3,2\!+\!\sqrt{-5})$}; \node[Blue] (11) at (0,0) {$(3)$}; \draw (11) to (Z); \draw (Z) to (R); \draw (11) to (1-6root-5); \draw (11) to (1+6root-5); \draw (R) to (1-6root-5); \draw (R) to (1+6root-5); \end{scope} %% \begin{scope}[shift={(8.5,0)}] \node[Blue] (R) at (0,2) {$\Z[\sqrt{-5}]$}; \node[Blue] (root-5) at (1,1) {$(\sqrt{-5})$}; \node[Red] (Z) at (0,1) {$\Z$}; \node[Blue] (5) at (0,0) {$(5)$}; \draw (5) to (Z); \draw (Z) to (R); \draw (5) to (root-5); \draw (R) to (root-5); \end{scope} \end{tikzpicture} \] \item Give an elementary characterization of non-prime irreducibles in $R_{-6}$. % \medskip \end{enumerate} \item Prove the following basic facts about principal ideal domains (PIDs). \vspace{-1mm} \begin{enumerate}[(a)] \item The following three conditions are equivalent for nonzero $a,b\in R$: %\vspace{-1mm} \begin{enumerate}[(i)] \item $a$ and $b$ are associates (that is, $a\mid b$ and $b\mid a$), \item $a=bu$ for some unit $u\in R,ドル \item $(a)=(b)$. \end{enumerate} \item The following three conditions are equivalent for an element $a\in R$: %\vspace{-1mm} \begin{enumerate}[(i)] \item $a$ is irreducible \item the ideal $(a)$ is maximal \item the ideal $(a)$ is prime \end{enumerate} \item Any two nonzero elements $a,b\in R$ have a unique LCM, up to associates, which is a generator $m$ of $(a)\cap (b)$. \end{enumerate} \item If the quadratic integer ring $R_m$ is a Euclidean domain, then for every nonzero $a,b\in R,ドル the division algorithm can be used to find $r,q\in R$ such that \[ a=bq+r,\qquad 0\leq N(r)] (-0,-2.6) to (0,6.6); \node at (-.4,6.5) {\normalsize $\Im$}; \draw[->] (-2.6,0) -- (8.6,0); \node at (8.5,-.4) {\normalsize $\Re$}; %% \node [Blue] at (.85,2.4) {\small $b=1+2i$}; \node [Blue] at (-2,1.5) {$ib$}; \node [Blue] at (-1.3,-1.5) {$-b$}; \node [Blue] at (2.1,-1.5) {$-ib$}; \node [Blue] at (3,.7) {$b-ib$}; \node [Blue] at (4.3,3.4) {2ドルb-ib$}; \node [Blue] at (6.3,1.6) {2ドルb-2ib$}; \node [Blue] at (6.8,4.4) {3ドルb-2ib$}; \node [Red] at (5.9,3.4) {\small $a$}; \draw [g,thick] (4,3) to (6,3); \draw [g,thick] (6,2) to (6,3); \draw [g,thick] (7,4) to (6,3); \node [A] at (6,3) {}; %% \end{tikzpicture} \] % \caption{An example of the division algorithm in the Gaussian integers, using $\Alert{a=6+3i}$ and $\Balert{b=1+2i}$.} \item The ring $R_{-5}=\Z[\sqrt{-5}]$ is \emph{not} a Euclidean domain, since the division algorithm fails for $a=5$ and $b=2+\sqrt{-5},ドル as demonstrated by the following visual. Find an $a$ and $b$ in $R_{-6}=\Z[\sqrt{-6}]$ that confirms that it too is not Euclidean, and construct an analogous visual. \[ \begin{tikzpicture}[scale=1] \tikzstyle{0} = [circle, draw, black, fill=black,inner sep=0pt, minimum size=2mm] \tikzstyle{p} = [circle, draw, faded, fill=faded,inner sep=0pt, minimum size=1.5mm] \tikzstyle{B} = [circle, draw, Blue, fill=Blue,inner sep=0pt, minimum size=2mm] \tikzstyle{A} = [circle, draw, Red, fill=Red,inner sep=0pt, minimum size=2mm] \tikzstyle{p} = [circle, draw, faded, fill=faded,inner sep=0pt, minimum size=1.5mm] \tikzstyle{G} = [circle, draw, faded, fill=Blue,inner sep=0pt, minimum size=1.65mm] \draw [dashed,Blue,fill=lightestblue!40] (5,0) circle (3cm); \tikzstyle{every node}=[font=\scriptsize] \draw [faded] (0,0) circle (1cm); %% \foreach \i in {-2,...,4} { \draw[faded] (-6.35,2.236*\i) -- (9.35,2.236*\i); } \foreach \i in {-6,...,9} { \draw[faded] (\i,-4.8) -- (\i,9.25); } \draw (-6.35,0) -- (9.35,0); \draw (0,-4.8) -- (0,9.25); %% %% Positively sloped lines \draw[domain=-6:-0.73, smooth, variable=\x, lightestblue, very thin] plot ({\x}, {1.118*(\x+9)+0}); \draw[domain=-4.29:8.27, smooth, variable=\x, lightestblue, very thin] plot ({\x}, {1.118*(\x-0)+0}); \draw[domain=4.7:9.35, smooth, variable=\x, lightestblue, very thin] plot ({\x}, {1.118*(\x-9)+0}); %% Negatively sloped lines \draw[domain=7.65:9.35, smooth, variable=\x, lightestblue, very thin] plot ({\x}, {-.894*(\x-18)+0}); \draw[domain=3.15:9.35, smooth, variable=\x, lightestblue, very thin] plot ({\x}, {-.894*(\x-13.5)+0}); \draw[domain=-1.35:9.35, smooth, variable=\x, lightestblue, very thin] plot ({\x}, {-.894*(\x-9)+0}); \draw[domain=-5.85:9.35, smooth, variable=\x, lightestblue, very thin] plot ({\x}, {-.894*(\x-4.5)+0}); \draw[domain=-6.35:5.37, smooth, variable=\x, lightestblue, very thin] plot ({\x}, {-.894*\x}); \draw[domain=-6.35:0.87, smooth, variable=\x, lightestblue, very thin] plot ({\x}, {-.894*(\x+4.5)}); \draw[domain=-6.35:-3.63, smooth, variable=\x, lightestblue, very thin] plot ({\x}, {-.894*(\x+9)}); %% \node [Blue] at (1.7,2.9) {\small $b\!=\!2\!+\!\sqrt{-5}$}; \node [Blue] at (-4,2*2.236) {\small $\sqrt{-5}b$}; %\node [Blue] at (-2,1.5) {$ib$}; \node [A] at (5,0) {}; \node [B] at (2,2.236) {}; \node [Red] at (5.4,.6) {\small $a=5$}; \node [G] at (-1,4*2.236) {}; \node [G] at (8,4*2.236) {}; \node [G] at (-3,3*2.236) {}; \node [G] at (6,3*2.236) {}; \node [B] at (-5,2*2.236) {}; \node [G] at (4,2*2.236) {}; \node [G] at (0,0) {}; \node [G] at (9,0) {}; \node [G] at (-2,-2.236) {}; \node [G] at (7,-2.236) {}; \node [G] at (-4,-2*2.236) {}; \node [G] at (5,-2*2.236) {}; \draw [b] (0,0) to (2,2.236); \draw [b] (0,0) to (-5,2*2.236); %% \end{tikzpicture} \] \end{enumerate} \end{enumerate} %%---------------------------------------------------------- \end{document}

AltStyle によって変換されたページ (->オリジナル) /