Arc sine is inverse of the sine function.
arcsinx ≡ sin invxArc sine is monotone antisymmetric function defined in the range [−1, 1]. Its graph is depicted below in fig. 1.
[画像:Fig. 1. Graph y = arcsin x.] Fig. 1. Graph of the arc sine function y = arcsinx.Function codomain is limited to the range [−π/2, π/2].
Complementary angle:
arcsinx + arccosx = π/2and as consequence:
arcsin cos φ = π/2 − φNegative argument:
arcsin(−x) = −arcsinxReciprocal argument:
arsin(1/x) = arccscxSum and difference:
arcsinx + arcsiny = arcsin[x√(1 − y2) + y√(1 − x2)]Some argument values:
| Argument x | Value arcsinx |
|---|---|
| 0 | 0 |
| (√6 − √2) /4 | π/12 |
| (√5 − 1) /4 | π/10 |
| √(2 − √2) /2 | π/8 |
| 1 /2 | π/6 |
| √(10 − 2√5) /4 | π/5 |
| 1 /√2 | π/4 |
| (√5 + 1) /4 | 3π/10 |
| √3 /2 | π/3 |
| √(2 + √2) /2 | 3π/8 |
| √(10 + 2√5) /4 | 2π/5 |
| (√6 + √2) /4 | 5π/12 |
| 1 | π/2 |
Arc sine derivative:
arcsin′x = 1 /√(1 − x2)Indefinite integral of the arc sine:
∫ arcsinx dx = x arcsinx + √(1 − x2) + Cwhere C is an arbitrary constant.
To calculate arc sine of the number:
arcsin(−1);To get arc sine of the complex number:
arcsin(−1+i);To get arc sine of the current result:
arcsin(rslt);To get arc sine of the number z in calculator memory:
arcsin(mem[z]);Trigonometric arc sine of the real argument is supported in free version of the Librow calculator.
Trigonometric arc sine of the complex argument is supported in professional version of the Librow calculator.