Main Page Namespace List Class Hierarchy Alphabetical List Compound List File List Namespace Members Compound Members File Members Related Pages

Orbital_AVX512.C

Go to the documentation of this file.
00001 /***************************************************************************
00002 *cr 
00003 *cr (C) Copyright 1995-2019 The Board of Trustees of the 
00004 *cr University of Illinois 
00005 *cr All Rights Reserved 
00006 *cr 
00007 ***************************************************************************/
00008 /***************************************************************************
00009 * RCS INFORMATION:
00010 *
00011 * $RCSfile: Orbital_AVX512.C,v $
00012 * $Author: johns $ $Locker: $ $State: Exp $
00013 * $Revision: 1.4 $ $Date: 2020年10月27日 04:18:28 $
00014 *
00015 ***************************************************************************/
00021 // Due to differences in code generation between gcc/intelc/clang/msvc, we
00022 // don't have to check for a defined(__AVX512F__)
00023 #if defined(VMDCPUDISPATCH) && defined(VMDUSEAVX512) 
00024 
00025 #include <immintrin.h>
00026 
00027 #include <math.h>
00028 #include <stdio.h>
00029 #include "Orbital.h"
00030 #include "DrawMolecule.h"
00031 #include "utilities.h"
00032 #include "Inform.h"
00033 #include "WKFThreads.h"
00034 #include "WKFUtils.h"
00035 #include "ProfileHooks.h"
00036 
00037 #define ANGS_TO_BOHR 1.88972612478289694072f
00038 
00039 #if defined(__GNUC__) && ! defined(__INTEL_COMPILER)
00040 #define __align(X) __attribute__((aligned(X) ))
00041 #else
00042 #define __align(X) __declspec(align(X) )
00043 #endif
00044 
00045 #define MLOG2EF -1.44269504088896f
00046 
00047 #if 0
00048 static void print_mm512_ps(__m512 v) {
00049 __attribute__((aligned(64))) float tmp[16]; // 64-byte aligned for AVX512
00050 _mm512_storeu_ps(&tmp[0], v);
00051 
00052 printf("mm512: ");
00053 int i;
00054 for (i=0; i<16; i++) 
00055 printf("%g ", tmp[i]);
00056 printf("\n");
00057 }
00058 #endif
00059 
00060 
00061 //
00062 // John Stone, March 2017
00063 //
00064 // aexpfnxavx512f() - AVX-512F version of aexpfnx().
00065 //
00066 
00067 /*
00068 * Interpolating coefficients for linear blending of the
00069 * 3rd degree Taylor expansion of 2^x about 0 and -1.
00070 */
00071 #define SCEXP0 1.0000000000000000f
00072 #define SCEXP1 0.6987082824680118f
00073 #define SCEXP2 0.2633174272827404f
00074 #define SCEXP3 0.0923611991471395f
00075 #define SCEXP4 0.0277520543324108f
00076 
00077 /* for single precision float */
00078 #define EXPOBIAS 127
00079 #define EXPOSHIFT 23
00080 
00081 /* cutoff is optional, but can help avoid unnecessary work */
00082 #define ACUTOFF -10
00083 
00084 typedef union AVX512reg_t {
00085 __m512 f; // 16x float (AVX-512F)
00086 __m512i i; // 16x 32-bit int (AVX-512F)
00087 } AVX512reg;
00088 
00089 __m512 aexpfnxavx512f(__m512 x) {
00090 __mmask16 mask;
00091 mask = _mm512_cmpnle_ps_mask(_mm512_set1_ps(ACUTOFF), x); // Is x within cutoff?
00092 #if 0
00093 // If all x are outside of cutoff, return 0s.
00094 if (_mm512_movemask_ps(scal.f) == 0) {
00095 return _mm512_set1_ps(0.0f);
00096 }
00097 // Otherwise, scal.f contains mask to be ANDed with the scale factor
00098 #endif
00099 
00100 /*
00101 * Convert base: exp(x) = 2^(N-d) where N is integer and 0 <= d < 1.
00102 *
00103 * Below we calculate n=N and x=-d, with "y" for temp storage,
00104 * calculate floor of x*log2(e) and subtract to get -d.
00105 */
00106 __align(64) AVX512reg n;
00107 __m512 mb = _mm512_mul_ps(x, _mm512_set1_ps(MLOG2EF));
00108 n.i = _mm512_cvttps_epi32(mb);
00109 __m512 mbflr = _mm512_cvtepi32_ps(n.i);
00110 __m512 d = _mm512_sub_ps(mbflr, mb);
00111 
00112 // Approximate 2^{-d}, 0 <= d < 1, by interpolation.
00113 // Perform Horner's method to evaluate interpolating polynomial.
00114 __m512 y;
00115 y = _mm512_fmadd_ps(d, _mm512_set1_ps(SCEXP4), _mm512_set1_ps(SCEXP3));
00116 y = _mm512_fmadd_ps(y, d, _mm512_set1_ps(SCEXP2));
00117 y = _mm512_fmadd_ps(y, d, _mm512_set1_ps(SCEXP1));
00118 y = _mm512_fmadd_ps(y, d, _mm512_set1_ps(SCEXP0));
00119 
00120 // Calculate 2^N exactly by directly manipulating floating point exponent,
00121 // then use it to scale y for the final result.
00122 n.i = _mm512_sub_epi32(_mm512_set1_epi32(EXPOBIAS), n.i);
00123 n.i = _mm512_slli_epi32(n.i, EXPOSHIFT);
00124 n.f = _mm512_mask_mul_ps(n.f, mask, _mm512_set1_ps(0.0f), n.f);
00125 y = _mm512_mul_ps(y, n.f);
00126 return y;
00127 }
00128 
00129 
00130 //
00131 // AVX-512F implementation for Xeons that don't have special fctn units
00132 //
00133 int evaluate_grid_avx512f(int numatoms,
00134 const float *wave_f, const float *basis_array,
00135 const float *atompos,
00136 const int *atom_basis,
00137 const int *num_shells_per_atom,
00138 const int *num_prim_per_shell,
00139 const int *shell_types,
00140 const int *numvoxels,
00141 float voxelsize,
00142 const float *origin,
00143 int density,
00144 float * orbitalgrid) {
00145 if (!orbitalgrid)
00146 return -1;
00147 
00148 int nx, ny, nz;
00149 __attribute__((aligned(64))) float sxdelta[16]; // 64-byte aligned for AVX512
00150 for (nx=0; nx<16; nx++) 
00151 sxdelta[nx] = ((float) nx) * voxelsize * ANGS_TO_BOHR;
00152 
00153 // Calculate the value of the orbital at each gridpoint and store in 
00154 // the current oribtalgrid array
00155 int numgridxy = numvoxels[0]*numvoxels[1];
00156 for (nz=0; nz<numvoxels[2]; nz++) {
00157 float grid_x, grid_y, grid_z;
00158 grid_z = origin[2] + nz * voxelsize;
00159 for (ny=0; ny<numvoxels[1]; ny++) {
00160 grid_y = origin[1] + ny * voxelsize;
00161 int gaddrzy = ny*numvoxels[0] + nz*numgridxy;
00162 for (nx=0; nx<numvoxels[0]; nx+=16) {
00163 grid_x = origin[0] + nx * voxelsize;
00164 
00165 // calculate the value of the wavefunction of the
00166 // selected orbital at the current grid point
00167 int at;
00168 int prim, shell;
00169 
00170 // initialize value of orbital at gridpoint
00171 __m512 value = _mm512_set1_ps(0.0f);
00172 
00173 // initialize the wavefunction and shell counters
00174 int ifunc = 0; 
00175 int shell_counter = 0;
00176 
00177 // loop over all the QM atoms
00178 for (at=0; at<numatoms; at++) {
00179 int maxshell = num_shells_per_atom[at];
00180 int prim_counter = atom_basis[at];
00181 
00182 // calculate distance between grid point and center of atom
00183 float sxdist = (grid_x - atompos[3*at ])*ANGS_TO_BOHR;
00184 float sydist = (grid_y - atompos[3*at+1])*ANGS_TO_BOHR;
00185 float szdist = (grid_z - atompos[3*at+2])*ANGS_TO_BOHR;
00186 
00187 float sydist2 = sydist*sydist;
00188 float szdist2 = szdist*szdist;
00189 float yzdist2 = sydist2 + szdist2;
00190 
00191 __m512 xdelta = _mm512_load_ps(&sxdelta[0]); // aligned load
00192 __m512 xdist = _mm512_set1_ps(sxdist);
00193 xdist = _mm512_add_ps(xdist, xdelta);
00194 __m512 ydist = _mm512_set1_ps(sydist);
00195 __m512 zdist = _mm512_set1_ps(szdist);
00196 __m512 xdist2 = _mm512_mul_ps(xdist, xdist);
00197 __m512 ydist2 = _mm512_mul_ps(ydist, ydist);
00198 __m512 zdist2 = _mm512_mul_ps(zdist, zdist);
00199 __m512 dist2 = _mm512_set1_ps(yzdist2); 
00200 dist2 = _mm512_add_ps(dist2, xdist2);
00201 
00202 // loop over the shells belonging to this atom
00203 // XXX this is maybe a misnomer because in split valence
00204 // basis sets like 6-31G we have more than one basis
00205 // function per (valence-)shell and we are actually
00206 // looping over the individual contracted GTOs
00207 for (shell=0; shell < maxshell; shell++) {
00208 __m512 contracted_gto = _mm512_set1_ps(0.0f);
00209 
00210 // Loop over the Gaussian primitives of this contracted 
00211 // basis function to build the atomic orbital
00212 // 
00213 // XXX there's a significant opportunity here for further
00214 // speedup if we replace the entire set of primitives
00215 // with the single gaussian that they are attempting 
00216 // to model. This could give us another 6x speedup in 
00217 // some of the common/simple cases.
00218 int maxprim = num_prim_per_shell[shell_counter];
00219 int shelltype = shell_types[shell_counter];
00220 for (prim=0; prim<maxprim; prim++) {
00221 // XXX pre-negate exponent value
00222 float exponent = -basis_array[prim_counter ];
00223 float contract_coeff = basis_array[prim_counter + 1];
00224 
00225 // contracted_gto += contract_coeff * exp(-exponent*dist2);
00226 __m512 expval = _mm512_mul_ps(_mm512_set1_ps(exponent), dist2);
00227 // exp2f() equivalent required, use base-2 approximation
00228 __m512 retval = aexpfnxavx512f(expval);
00229 contracted_gto = _mm512_fmadd_ps(_mm512_set1_ps(contract_coeff), retval, contracted_gto);
00230 
00231 prim_counter += 2;
00232 }
00233 
00234 /* multiply with the appropriate wavefunction coefficient */
00235 __m512 tmpshell = _mm512_set1_ps(0.0f);
00236 switch (shelltype) {
00237 // use FMADD instructions
00238 case S_SHELL:
00239 value = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), contracted_gto, value);
00240 break;
00241 
00242 case P_SHELL:
00243 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), xdist, tmpshell);
00244 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), ydist, tmpshell);
00245 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), zdist, tmpshell);
00246 value = _mm512_fmadd_ps(tmpshell, contracted_gto, value);
00247 break;
00248 
00249 case D_SHELL:
00250 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), xdist2, tmpshell);
00251 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(xdist, ydist), tmpshell);
00252 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), ydist2, tmpshell);
00253 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(xdist, zdist), tmpshell);
00254 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(ydist, zdist), tmpshell);
00255 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), zdist2, tmpshell);
00256 value = _mm512_fmadd_ps(tmpshell, contracted_gto, value);
00257 break;
00258 
00259 case F_SHELL:
00260 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(xdist2, xdist), tmpshell);
00261 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(xdist2, ydist), tmpshell);
00262 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(ydist2, xdist), tmpshell);
00263 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(ydist2, ydist), tmpshell);
00264 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(xdist2, zdist), tmpshell);
00265 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(_mm512_mul_ps(xdist, ydist), zdist), tmpshell);
00266 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(ydist2, zdist), tmpshell);
00267 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(zdist2, xdist), tmpshell);
00268 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(zdist2, ydist), tmpshell);
00269 tmpshell = _mm512_fmadd_ps(_mm512_set1_ps(wave_f[ifunc++]), _mm512_mul_ps(zdist2, zdist), tmpshell);
00270 value = _mm512_fmadd_ps(tmpshell, contracted_gto, value);
00271 break;
00272 
00273 #if 0
00274 default:
00275 // avoid unnecessary branching and minimize use of pow()
00276 int i, j; 
00277 float xdp, ydp, zdp;
00278 float xdiv = 1.0f / xdist;
00279 for (j=0, zdp=1.0f; j<=shelltype; j++, zdp*=zdist) {
00280 int imax = shelltype - j; 
00281 for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv) {
00282 tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;
00283 }
00284 }
00285 value += tmpshell * contracted_gto;
00286 #endif
00287 } // end switch
00288 
00289 shell_counter++;
00290 } // end shell
00291 } // end atom
00292 
00293 // return either orbital density or orbital wavefunction amplitude
00294 if (density) {
00295 __mmask16 mask = _mm512_cmplt_ps_mask(value, _mm512_set1_ps(0.0f));
00296 __m512 sqdensity = _mm512_mul_ps(value, value);
00297 __m512 orbdensity = _mm512_mask_mul_ps(sqdensity, mask, sqdensity,
00298 _mm512_set1_ps(-1.0f));
00299 _mm512_storeu_ps(&orbitalgrid[gaddrzy + nx], orbdensity);
00300 } else {
00301 _mm512_storeu_ps(&orbitalgrid[gaddrzy + nx], value);
00302 }
00303 }
00304 }
00305 }
00306 
00307 // prevent x86 AVX-512 clock rate limiting performance loss due to 
00308 // false dependence on upper vector register state for scalar or 
00309 // SSE instructions executing after an AVX-512 instruction has written
00310 // an upper register.
00311 _mm256_zeroupper();
00312 
00313 return 0;
00314 }
00315 
00316 #endif
00317 
00318 

Generated on Tue Nov 18 02:47:47 2025 for VMD (current) by doxygen1.2.14 written by Dimitri van Heesch, © 1997-2002

AltStyle によって変換されたページ (->オリジナル) /