Line 12:
Line 12:
In a circular [[tokamak]], the [[Toroidal coordinates|poloidal circumference]] is ''2πr''.
In a circular [[tokamak]], the [[Toroidal coordinates|poloidal circumference]] is ''2πr''.
The connection length is (削除) '' (削除ここまで)L = 2(削除) & (削除ここまで)pi(削除) ; (削除ここまで)r/sin((削除) & (削除ここまで)alpha(削除) ; (削除ここまで))(削除) '' (削除ここまで),
The connection length is (追記) <math> (追記ここまで)L = 2(追記) \ (追記ここまで)pi r/(追記) \ (追記ここまで)sin((追記) \ (追記ここまで)alpha)(追記) </math> (追記ここまで),
where (削除) ''& (削除ここまで)alpha(削除) ;'' (削除ここまで)is the pitch angle of the field line, namely
where (追記) <math>\ (追記ここまで)alpha(追記) </math> (追記ここまで)is the pitch angle of the field line, namely
(削除) '' (削除ここまで)tan((削除) & (削除ここまで)alpha(削除) ; (削除ここまで)) = (削除) B<sub>& (削除ここまで)theta(削除) ;< (削除ここまで)/(削除) sub>/B<sub>& (削除ここまで)phi(削除) ; (削除ここまで)</(削除) sub (削除ここまで)>(削除) '' (削除ここまで).
(追記) <math>\ (追記ここまで)tan((追記) \ (追記ここまで)alpha) = (追記) B_\ (追記ここまで)theta/(追記) B_\ (追記ここまで)phi</(追記) math (追記ここまで)>.
Assuming (削除) ''B (削除ここまで)<(削除) sub (削除ここまで)>(削除) & (削除ここまで)phi(削除) ;</sub> >> B<sub>& (削除ここまで)theta(削除) ; (削除ここまで)</(削除) sub (削除ここまで)>(削除) '' (削除ここまで),
Assuming <(追記) math (追記ここまで)>(追記) B_\ (追記ここまで)phi (追記) \gg B_\ (追記ここまで)theta</(追記) math (追記ここまで)>,
one has (削除) '' (削除ここまで)sin((削除) & (削除ここまで)alpha(削除) ; (削除ここまで)) (削除) ∼ (削除ここまで)tan((削除) & (削除ここまで)alpha(削除) ; (削除ここまで))(削除) '' (削除ここまで), so that
one has (追記) <math>\ (追記ここまで)sin((追記) \ (追記ここまで)alpha) (追記) \simeq \ (追記ここまで)tan((追記) \ (追記ここまで)alpha)(追記) </math> (追記ここまで), so that
<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>
<ref>K. Miyamoto, ''Plasma Physics and Controlled Nuclear Fusion'', Springer-Verlag (2005) ISBN 3540242171</ref>
:<math>L = 2 \pi r \frac{B_\phi}{B_\theta} = 2 \pi R q</math>
:<math>L = 2 \pi r \frac{B_\phi}{B_\theta} = 2 \pi R q</math>
where q is the [[Rotational transform|safety factor]], approximated by
where (追記) '' (追記ここまで)q(追記) '' (追記ここまで)is the [[Rotational transform|safety factor]], approximated by
(削除) '' (削除ここまで)q = r (削除) B<sub>& (削除ここまで)phi(削除) ;</sub> (削除ここまで)/ R (削除) B<sub>& (削除ここまで)theta(削除) ; (削除ここまで)</(削除) sub (削除ここまで)>(削除) '' (削除ここまで).
(追記) <math> (追記ここまで)q = r (追記) B_\ (追記ここまで)phi / R (追記) B_\ (追記ここまで)theta</(追記) math (追記ここまで)>.
== Open field lines ==
== Open field lines ==
Revision as of 13:14, 17 April 2015
The connection length is understood to be the distance between two points,
measured along a magnetic field line passing through these points.
In the fusion context, a distinction is made between closed field lines
(inside the Last Closed Flux Surface) and open field lines (outside).
Closed field lines
In a toroidally confined plasma, inside the Last Closed Flux Surface, the connection length
is commonly defined as the length, measured along the magnetic field,
to complete a poloidal turn.
In a circular tokamak, the poloidal circumference is 2πr.
The connection length is ,
where is the pitch angle of the field line, namely
.
Assuming ,
one has , so that
[1]
where q is the safety factor, approximated by
.
Open field lines
Outside Last Closed Flux Surface, the connection length associated with a given point is defined as
the shortest distance from that point to any material surface measured along the field line
through that point.
References
- ↑ K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion, Springer-Verlag (2005) ISBN 3540242171