Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 10004), so that their means, in our notation, which is the same as by pm54.43lem 10036. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)
Theorem dju1p1e2 10210 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)
Ref | Expression |
---|---|
pm54.43 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8512 | . . . . . . 7 | |
2 | 1 | ensn1 9057 | . . . . . 6 |
3 | 2 | ensymi 9040 | . . . . 5 |
4 | entr 9042 | . . . . 5 | |
5 | 3, 4 | mpan2 691 | . . . 4 |
6 | 1on 8514 | . . . . . . . 8 | |
7 | 6 | onirri 6495 | . . . . . . 7 |
8 | disjsn 4709 | . . . . . . 7 | |
9 | 7, 8 | mpbir 231 | . . . . . 6 |
10 | unen 9082 | . . . . . 6 | |
11 | 9, 10 | mpanr2 704 | . . . . 5 |
12 | 11 | ex 412 | . . . 4 |
13 | 5, 12 | sylan2 593 | . . 3 |
14 | df-2o 8503 | . . . . 5 | |
15 | df-suc 6388 | . . . . 5 | |
16 | 14, 15 | eqtri 2764 | . . . 4 |
17 | 16 | breq2i 5149 | . . 3 |
18 | 13, 17 | imbitrrdi 252 | . 2 |
19 | en1 9060 | . . 3 | |
20 | en1 9060 | . . 3 | |
21 | sneq 4634 | . . . . . . . . . . . . . . 15 | |
22 | 21 | uneq2d 4167 | . . . . . . . . . . . . . 14 |
23 | unidm 4156 | . . . . . . . . . . . . . 14 | |
24 | 22, 23 | eqtr3di 2791 | . . . . . . . . . . . . 13 |
25 | vex 3483 | . . . . . . . . . . . . . . 15 | |
26 | 25 | ensn1 9057 | . . . . . . . . . . . . . 14 |
27 | 1sdom2 9272 | . . . . . . . . . . . . . 14 | |
28 | ensdomtr 9149 | . . . . . . . . . . . . . 14 | |
29 | 26, 27, 28 | mp2an 692 | . . . . . . . . . . . . 13 |
30 | 24, 29 | eqbrtrdi 5180 | . . . . . . . . . . . 12 |
31 | sdomnen 9017 | . . . . . . . . . . . 12 | |
32 | 30, 31 | syl 17 | . . . . . . . . . . 11 |
33 | 32 | necon2ai 2969 | . . . . . . . . . 10 |
34 | disjsn2 4710 | . . . . . . . . . 10 | |
35 | 33, 34 | syl 17 | . . . . . . . . 9 |
36 | 35 | a1i 11 | . . . . . . . 8 |
37 | uneq12 4162 | . . . . . . . . 9 | |
38 | 37 | breq1d 5151 | . . . . . . . 8 |
39 | ineq12 4214 | . . . . . . . . 9 | |
40 | 39 | eqeq1d 2738 | . . . . . . . 8 |
41 | 36, 38, 40 | 3imtr4d 294 | . . . . . . 7 |
42 | 41 | ex 412 | . . . . . 6 |
43 | 42 | exlimdv 1933 | . . . . 5 |
44 | 43 | exlimiv 1930 | . . . 4 |
45 | 44 | imp 406 | . . 3 |
46 | 19, 20, 45 | syl2anb 598 | . 2 |
47 | 18, 46 | impbid 212 | 1 |