Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9975), so that their means, in our notation, which is the same as by pm54.43lem 10007. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)
Theorem dju1p1e2 10181 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)
| Ref | Expression |
|---|---|
| pm54.43 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8485 | . . . . . . 7 | |
| 2 | 1 | ensn1 9030 | . . . . . 6 |
| 3 | 2 | ensymi 9013 | . . . . 5 |
| 4 | entr 9015 | . . . . 5 | |
| 5 | 3, 4 | mpan2 691 | . . . 4 |
| 6 | 1on 8487 | . . . . . . . 8 | |
| 7 | 6 | onirri 6464 | . . . . . . 7 |
| 8 | disjsn 4685 | . . . . . . 7 | |
| 9 | 7, 8 | mpbir 231 | . . . . . 6 |
| 10 | unen 9055 | . . . . . 6 | |
| 11 | 9, 10 | mpanr2 704 | . . . . 5 |
| 12 | 11 | ex 412 | . . . 4 |
| 13 | 5, 12 | sylan2 593 | . . 3 |
| 14 | df-2o 8476 | . . . . 5 | |
| 15 | df-suc 6356 | . . . . 5 | |
| 16 | 14, 15 | eqtri 2757 | . . . 4 |
| 17 | 16 | breq2i 5125 | . . 3 |
| 18 | 13, 17 | imbitrrdi 252 | . 2 |
| 19 | en1 9033 | . . 3 | |
| 20 | en1 9033 | . . 3 | |
| 21 | sneq 4609 | . . . . . . . . . . . . . . 15 | |
| 22 | 21 | uneq2d 4141 | . . . . . . . . . . . . . 14 |
| 23 | unidm 4130 | . . . . . . . . . . . . . 14 | |
| 24 | 22, 23 | eqtr3di 2784 | . . . . . . . . . . . . 13 |
| 25 | vex 3461 | . . . . . . . . . . . . . . 15 | |
| 26 | 25 | ensn1 9030 | . . . . . . . . . . . . . 14 |
| 27 | 1sdom2 9243 | . . . . . . . . . . . . . 14 | |
| 28 | ensdomtr 9122 | . . . . . . . . . . . . . 14 | |
| 29 | 26, 27, 28 | mp2an 692 | . . . . . . . . . . . . 13 |
| 30 | 24, 29 | eqbrtrdi 5156 | . . . . . . . . . . . 12 |
| 31 | sdomnen 8990 | . . . . . . . . . . . 12 | |
| 32 | 30, 31 | syl 17 | . . . . . . . . . . 11 |
| 33 | 32 | necon2ai 2960 | . . . . . . . . . 10 |
| 34 | disjsn2 4686 | . . . . . . . . . 10 | |
| 35 | 33, 34 | syl 17 | . . . . . . . . 9 |
| 36 | 35 | a1i 11 | . . . . . . . 8 |
| 37 | uneq12 4136 | . . . . . . . . 9 | |
| 38 | 37 | breq1d 5127 | . . . . . . . 8 |
| 39 | ineq12 4188 | . . . . . . . . 9 | |
| 40 | 39 | eqeq1d 2736 | . . . . . . . 8 |
| 41 | 36, 38, 40 | 3imtr4d 294 | . . . . . . 7 |
| 42 | 41 | ex 412 | . . . . . 6 |
| 43 | 42 | exlimdv 1932 | . . . . 5 |
| 44 | 43 | exlimiv 1929 | . . . 4 |
| 45 | 44 | imp 406 | . . 3 |
| 46 | 19, 20, 45 | syl2anb 598 | . 2 |
| 47 | 18, 46 | impbid 212 | 1 |