WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

FresnelC [z]

gives the Fresnel integral TemplateBox[{z}, FresnelC].

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Integration  
Series Expansions  
Integral Transforms  
Function Identities and Simplifications  
Function Representations  
Applications  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

FresnelC [z]

gives the Fresnel integral TemplateBox[{z}, FresnelC].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • FresnelC [z] is given by .
  • FresnelC [z] is an entire function of z with no branch cut discontinuities.
  • For certain special arguments, FresnelC automatically evaluates to exact values.
  • FresnelC can be evaluated to arbitrary numerical precision.
  • FresnelC automatically threads over lists.
  • FresnelC can be used with Interval and CenteredInterval objects. »

Examples

open all close all

Basic Examples  (5)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity :

Scope  (41)

Numerical Evaluation  (5)

Evaluate numerically to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate FresnelC efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix FresnelC function using MatrixFunction :

Specific Values  (3)

Value at a fixed point:

Values at infinity:

Find a local maximum as a root of (dTemplateBox[{x}, FresnelC])/(dx)=0:

Visualization  (2)

Plot the FresnelC function:

Plot the real part of TemplateBox[{z}, FresnelC]:

Plot the imaginary part of TemplateBox[{z}, FresnelC]:

Function Properties  (10)

FresnelC is defined for all real and complex values:

Approximate function range of FresnelC :

FresnelC is an odd function:

FresnelC is an analytic function of x:

FresnelC is neither non-increasing nor non-decreasing:

FresnelC is not injective:

FresnelC is not surjective:

FresnelC is neither non-negative nor non-positive:

FresnelC has no singularities or discontinuities:

Neither convex nor concave:

Differentiation  (3)

First derivative:

Higher derivatives:

Formula for the ^(th) derivative:

Integration  (3)

Indefinite integral of FresnelC :

Definite integral of an odd integrand over an interval centered at the origin is 0:

More integrals:

Series Expansions  (5)

Taylor expansion for FresnelC :

Plot the first three approximations for FresnelC around :

General term in the series expansion of FresnelC :

Find series expansion at infinity:

Give the result for an arbitrary symbolic direction :

FresnelC can be applied to power series:

Integral Transforms  (2)

Compute the Laplace transform using LaplaceTransform :

MellinTransform :

Function Identities and Simplifications  (3)

Verify an identity relating HypergeometricPFQ to FresnelC :

Simplify an integral to FresnelC :

Argument simplifications:

Function Representations  (5)

Integral representation:

Relation to the error function Erf :

FresnelC can be represented as a DifferentialRoot :

FresnelC can be represented in terms of MeijerG :

TraditionalForm formatting:

Applications  (5)

Intensity of a wave diffracted by a halfplane:

Plot a Cornu spiral:

A solution of the timedependent 1D Schrödinger equation for a sudden opening of a shutter:

Check the Schrödinger equation:

Plot the timedependent solution:

Plot of FresnelC along a circle in the complex plane:

Fractional derivative of Sin :

Derivative of order of Sin :

Plot a smooth transition between the derivative and integral of Sin :

Properties & Relations  (6)

Use FullSimplify to simplify expressions containing Fresnel integrals:

Find a numerical root:

Obtain FresnelC from integrals and sums:

Solve a differential equation:

Calculate the Wronskian:

Compare with Wronskian :

Integrals:

Integral transforms:

Possible Issues  (3)

FresnelC can take large values for moderatesize arguments:

A larger setting for $MaxExtraPrecision can be needed:

Some references use a different convention for the Fresnel integrals:

See Also

FresnelS   Erf   CosIntegral   FresnelF   FresnelG

Tech Notes

History

Introduced in 1996 (3.0) | Updated in 2014 (10.0) 2021 (13.0) 2022 (13.1)

Wolfram Research (1996), FresnelC, Wolfram Language function, https://reference.wolfram.com/language/ref/FresnelC.html (updated 2022).

Text

Wolfram Research (1996), FresnelC, Wolfram Language function, https://reference.wolfram.com/language/ref/FresnelC.html (updated 2022).

CMS

Wolfram Language. 1996. "FresnelC." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/FresnelC.html.

APA

Wolfram Language. (1996). FresnelC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FresnelC.html

BibTeX

@misc{reference.wolfram_2025_fresnelc, author="Wolfram Research", title="{FresnelC}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/FresnelC.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_fresnelc, organization={Wolfram Research}, title={FresnelC}, year={2022}, url={https://reference.wolfram.com/language/ref/FresnelC.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /