WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

ParametricPlot3D [{fx,fy,fz},{u,umin,umax}]

produces a three-dimensional space curve parametrized by a variable u which runs from umin to umax.

ParametricPlot3D [{fx,fy,fz},{u,umin,umax},{v,vmin,vmax}]

produces a three-dimensional surface parametrized by u and v.

ParametricPlot3D [{{fx,fy,fz},{gx,gy,gz},},]

plots several objects together.

ParametricPlot3D [,{u,v}reg]

takes parameters {u,v} to be in the geometric region reg.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Sampling  
Labeling and Legending  
Presentation  
Options  
BoundaryStyle  
Boxed  
BoxRatios  
Show More Show More
ColorFunction  
ColorFunctionScaling  
EvaluationMonitor  
Exclusions  
ExclusionsStyle  
LabelingSize  
MaxRecursion  
Mesh  
MeshFunctions  
MeshShading  
MeshStyle  
NormalsFunction  
PerformanceGoal  
PlotLabels  
PlotLegends  
PlotPoints  
PlotStyle  
PlotTheme  
RegionFunction  
ScalingFunctions  
TextureCoordinateFunction  
TextureCoordinateScaling  
WorkingPrecision  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
History
Cite this Page

ParametricPlot3D [{fx,fy,fz},{u,umin,umax}]

produces a three-dimensional space curve parametrized by a variable u which runs from umin to umax.

ParametricPlot3D [{fx,fy,fz},{u,umin,umax},{v,vmin,vmax}]

produces a three-dimensional surface parametrized by u and v.

ParametricPlot3D [{{fx,fy,fz},{gx,gy,gz},},]

plots several objects together.

ParametricPlot3D [,{u,v}reg]

takes parameters {u,v} to be in the geometric region reg.

Details and Options

Examples

open all close all

Basic Examples  (5)

Plot a parametric surface:

Plot a parametric space curve:

Plot multiple parametric surfaces:

Use simple styling of surfaces:

Plot surfaces with cuts:

Scope  (33)

Sampling  (9)

More points are sampled when the function changes quickly:

The plot range is selected automatically:

Ranges where the function becomes nonreal are excluded:

The surface is split when there are discontinuities in the function:

Use PlotPoints and MaxRecursion to control adaptive sampling:

Use PlotRange to focus in on areas of interest:

Use Exclusions to split the resulting surface:

The domain of the parameters may be specified by a region:

With two parameters:

The domain of the parameters may be specified by a MeshRegion :

Labeling and Legending  (10)

Use Callout to add the expressions as a label:

Use PlotLabels to label the surface:

Use any text as a label:

Label a surface:

Place the label along the curve:

Place the label at a scaled position:

Place the labels relative to the surface:

Label the curve with PlotLabels :

Specify the label at the {x,y,z} position:

Include legends for each curve:

Include legends for each surface:

Use Legended to provide a legend for a specific curve:

Use Placed to change the legend location:

Presentation  (14)

Multiple curves are automatically colored to be distinct:

Provide explicit styling to different curves and regions:

Add legends to identify curves and regions:

Use a theme with detailed ticks, grid lines, and legends:

Increase the thickness of the surface:

Use Opacity to show internal structure and Specularity for additional depth cuing:

Add labels:

Provide an interactive Tooltip for each curve or region:

Create an overlay mesh:

Style the areas between mesh levels:

Color by parameter values:

Use named color schemes:

Remove portions of a curve or surface:

Use ScalingFunctions to scale reverse the z axis:

Scale the parameters rather than the axes:

Options  (87)

BoundaryStyle  (4)

No boundary is drawn by default:

Use a thick red boundary:

Boundaries are drawn where the surface is clipped by RegionFunction :

Boundaries are not drawn where the surface is clipped by Exclusions :

Boxed  (1)

Do not draw the edges of the bounding box:

BoxRatios  (2)

Choose the ratios of side lengths from the actual plot values:

Set the ratios to {1,1,1}:

ColorFunction  (5)

Color the curve by scaled , , , or value:

Color the surface by scaled , , , , or value:

Use a named color gradient:

ColorFunction has higher priority than PlotStyle :

Use red for the parameter :

ColorFunctionScaling  (1)

Color by absolute value:

EvaluationMonitor  (3)

Show where in parameter space ParametricPlot3D samples:

Show where ParametricPlot3D samples in space:

Count how many points are sampled:

Exclusions  (6)

This uses automatic methods to compute exclusions, in this case from branch cuts:

Indicate that no exclusions should be computed:

Give a set of exclusions as an equation:

Give two sets of exclusions:

Use both automatically computed and explicit exclusions:

Provide an explicit list of points for exclusions:

ExclusionsStyle  (3)

Style the boundary with a thick blue line:

Style the boundary with a thick blue line and the surface in between with yellow:

Style the exclusions for a curve with a red line:

LabelingSize  (2)

Textual labels are shown at their actual sizes:

Specify the size of the text:

Image labels are resized to fit in the plot:

Specify the labeling size:

MaxRecursion  (2)

Refine the surface where it changes quickly:

Refine the curve where it changes quickly:

Mesh  (5)

Show the initial and final sampling mesh:

Use 10 mesh levels evenly spaced in the parameter directions:

Use a different number of mesh lines in different directions:

Use an explicit list of values for the mesh in the parameter and no mesh in the parameter:

Use explicit value and style for the mesh:

MeshFunctions  (3)

Use a mesh evenly spaced in the , , , and directions:

Use a mesh evenly spaced in the , , , , and directions:

Show five mesh levels in the direction (red) and 10 in the direction (blue):

MeshShading  (9)

Map a cellular automaton array onto a sphere:

Alternate red and blue arcs in the direction:

Use None to remove segments:

MeshShading can be used with PlotStyle :

MeshShading has higher priority than PlotStyle for styling:

Use the PlotStyle for some segments by setting MeshShading to Automatic :

MeshShading can be used with ColorFunction :

Fill between regions defined by multiple mesh functions:

Use FaceForm to use different styles for different sides of a surface:

MeshStyle  (3)

Automatically choose the mesh style:

Use a red mesh in the direction:

Use a red mesh in the direction and a blue mesh in the direction:

NormalsFunction  (3)

Normals are automatically calculated:

Use None to get flat shading for all the polygons:

Vary the effective normals used on the surface:

PerformanceGoal  (2)

Generate a higher-quality plot:

Emphasize performance, possibly at the cost of quality:

PlotLabels  (6)

Specify text to label a curve:

Use Placed to place the label above the curve:

Use Callout to draw a leader line:

Place the labels differently for each curve:

PlotLabels->"Expressions" uses functions as curve labels:

Use callouts to identify the surfaces:

Specify the callout label at a position for a surface:

PlotLegends  (3)

Use placeholders to identify plot styles:

Use specific labels:

Use the respective expressions:

Use Placed to control legend position:

Use SwatchLegend to change the appearance:

PlotPoints  (1)

Use more initial points to get a smoother plot:

PlotStyle  (4)

Use different style directives:

By default different styles are chosen for multiple curves:

Explicitly specify the style for different curves and regions:

Use a different style inside the surface:

PlotTheme  (3)

Use a theme with simple ticks in a bright color scheme:

Remove mesh lines and boundary lines:

Create a thick surface for 3D printing:

RegionFunction  (3)

Select a region in , , , , and :

Select a region in parameter space:

Select portions of a curve in parameter space:

ScalingFunctions  (6)

By default, plots have linear scales in all directions:

Apply a log scale to the z direction:

Use a shifted log scale to show a function with negative positions:

Use ScalingFunctions to reverse the coordinate direction in :

Use a scale defined by a function and its inverse:

Scale any of the parameter spaces rather than the axes:

Scale the u parameter:

Scale the v parameter:

TextureCoordinateFunction  (4)

Textures use scaled and parameters by default:

Use the and coordinates:

Use unscaled coordinates:

Use textures to highlight how parameters map onto a surface:

TextureCoordinateScaling  (1)

Use scaled or unscaled coordinates for textures:

WorkingPrecision  (2)

Evaluate functions using machine-precision arithmetic:

Evaluate functions using arbitrary-precision arithmetic:

Applications  (7)

Simple parametric surfaces, including a plane:

Cylinder:

Cone:

Sphere:

Ellipsoid:

Torus:

Well-known surfaces, including the Möbius strip:

Klein bottle:

Implement a model of mollusc shell growth [more info]:

Highlighting a space curve by providing a supporting (ruled) surface:

Show both plots together:

The Lorenz equations [more info]:

Compute a parametric curve from curvature and torsion [more info]:

Plot the resulting space curves:

Show Enneper's minimal surface:

Properties & Relations  (6)

Plot3D is a special case of ParametricPlot3D for surfaces:

Use RevolutionPlot3D and SphericalPlot3D for cylindrical and spherical coordinates:

Use ParametricPlot for curves and regions in two dimensions:

Use ContourPlot3D and RegionPlot3D for implicitly defined surfaces and regions:

Use ListPlot3D and ListSurfacePlot3D for data:

Use ListLinePlot3D to plot curves through lists of points:

Possible Issues  (3)

Surfaces that have multiple coverings may exhibit unusual behavior:

Use BoundaryStyle and MeshStyle together for closed surfaces:

Automatic PlotRange depends on parametrization:

Use a different parametrization:

Or use PlotRange->All :

Neat Examples  (1)

Variations on a sphere:

Tech Notes

History

Introduced in 1991 (2.0) | Updated in 2007 (6.0) 2010 (8.0) 2012 (9.0) 2014 (10.0) 2016 (11.0) 2019 (12.0) 2022 (13.1)

Wolfram Research (1991), ParametricPlot3D, Wolfram Language function, https://reference.wolfram.com/language/ref/ParametricPlot3D.html (updated 2022).

Text

Wolfram Research (1991), ParametricPlot3D, Wolfram Language function, https://reference.wolfram.com/language/ref/ParametricPlot3D.html (updated 2022).

CMS

Wolfram Language. 1991. "ParametricPlot3D." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/ParametricPlot3D.html.

APA

Wolfram Language. (1991). ParametricPlot3D. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ParametricPlot3D.html

BibTeX

@misc{reference.wolfram_2025_parametricplot3d, author="Wolfram Research", title="{ParametricPlot3D}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/ParametricPlot3D.html}", note=[Accessed: 18-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_parametricplot3d, organization={Wolfram Research}, title={ParametricPlot3D}, year={2022}, url={https://reference.wolfram.com/language/ref/ParametricPlot3D.html}, note=[Accessed: 18-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /