WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

CoefficientRules [poly,{x1,x2,}]

gives the list {{e11,e12,}c1,{e21,}c2,} of exponent vectors and coefficients for the monomials in poly with respect to the xi.

CoefficientRules [poly,{x1,x2,},order]

gives the result with the monomial ordering specified by order.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Options  
Modulus  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
History
Cite this Page

CoefficientRules [poly,{x1,x2,}]

gives the list {{e11,e12,}c1,{e21,}c2,} of exponent vectors and coefficients for the monomials in poly with respect to the xi.

CoefficientRules [poly,{x1,x2,},order]

gives the result with the monomial ordering specified by order.

Details and Options

Examples

open all close all

Basic Examples  (1)

Get exponents and coefficients of monomials:

Scope  (1)

Use "DegreeReverseLexicographic" monomial ordering:

Specify the same ordering using weight matrix:

Options  (1)

Modulus  (1)

Reduce the coefficients modulo 2:

Properties & Relations  (2)

FromCoefficientRules reconstructs the original polynomial:

MonomialList gives a different representation:

For two variables "DegreeLexicographic" and "DegreeReverseLexicographic" coincide:

Possible Issues  (1)

The list given by Variables [poly] is not always sorted:

Neat Examples  (2)

Visualize monomial orderings in 2D:

The standard built-in orderings:

In 2D some orderings cannot be distinguished:

Visualize monomial orderings in 3D:

In 3D all orderings are distinct:

Tech Notes

Wolfram Research (2008), CoefficientRules, Wolfram Language function, https://reference.wolfram.com/language/ref/CoefficientRules.html.

Text

Wolfram Research (2008), CoefficientRules, Wolfram Language function, https://reference.wolfram.com/language/ref/CoefficientRules.html.

CMS

Wolfram Language. 2008. "CoefficientRules." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CoefficientRules.html.

APA

Wolfram Language. (2008). CoefficientRules. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CoefficientRules.html

BibTeX

@misc{reference.wolfram_2025_coefficientrules, author="Wolfram Research", title="{CoefficientRules}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/CoefficientRules.html}", note=[Accessed: 17-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_coefficientrules, organization={Wolfram Research}, title={CoefficientRules}, year={2008}, url={https://reference.wolfram.com/language/ref/CoefficientRules.html}, note=[Accessed: 17-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /