WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

AppellF2 [a,b1,b2,c1,c2,x,y]

is the Appell hypergeometric function of two variables .

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Differentiation  
Series Expansions  
Applications  
Neat Examples  
See Also
Related Guides
Related Links
History
Cite this Page

AppellF2 [a,b1,b2,c1,c2,x,y]

is the Appell hypergeometric function of two variables .

Details

  • AppellF2 belongs to the family of Appell functions that generalize the hypergeometric series and solves the system of Horn PDEs with polynomial coefficients.
  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • has a primary definition through the hypergeometric series , which is convergent inside the region TemplateBox[{x}, Abs]+TemplateBox[{y}, Abs]<1.
  • The region of convergence of the Appell F2 series for real values of its arguments is the following:
  • In general, satisfies the following Horn PDE system »:
  • reduces to when or .
  • For certain special arguments, AppellF2 automatically evaluates to exact values.
  • AppellF2 can be evaluated to arbitrary numerical precision.

Examples

open all close all

Basic Examples  (7)

Evaluate numerically:

The defining sum:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Plot a family of AppellF2 functions:

Series expansion at the origin:

TraditionalForm formatting:

Scope  (17)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate AppellF2 efficiently at high precision:

Compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix AppellF2 function using MatrixFunction :

Specific Values  (3)

Values at fixed points:

Simplify to Hypergeometric2F1 functions:

Value at zero:

Visualization  (3)

Plot the AppellF2 function for various parameters:

Plot AppellF2 as a function of its second parameter :

Plot the real part of :

Plot the imaginary part of :

Differentiation  (4)

First derivative with respect to x:

First derivative with respect to y:

Higher derivatives with respect to y:

Plot the higher derivatives with respect to y when a=b1=b2=2, c1=c2=5 and x=1/5:

Formula for the ^(th) derivative with respect to y:

Series Expansions  (1)

Find the Taylor expansion using Series :

Plots of the first three approximations around :

Applications  (1)

The Appell function solves the following system of PDEs with polynomial coefficients:

Check that is a solution:

Neat Examples  (1)

Many elementary and special functions are special cases of AppellF2 :

Wolfram Research (2023), AppellF2, Wolfram Language function, https://reference.wolfram.com/language/ref/AppellF2.html.

Text

Wolfram Research (2023), AppellF2, Wolfram Language function, https://reference.wolfram.com/language/ref/AppellF2.html.

CMS

Wolfram Language. 2023. "AppellF2." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AppellF2.html.

APA

Wolfram Language. (2023). AppellF2. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AppellF2.html

BibTeX

@misc{reference.wolfram_2025_appellf2, author="Wolfram Research", title="{AppellF2}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/AppellF2.html}", note=[Accessed: 17-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_appellf2, organization={Wolfram Research}, title={AppellF2}, year={2023}, url={https://reference.wolfram.com/language/ref/AppellF2.html}, note=[Accessed: 17-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /