Context Navigation


Changeset 206


Ignore:
Timestamp:
Feb 5, 2008, 9:55:58 AM (18 years ago)
Author:
neil.c.c.brown
Message:

Various tweaks to the notes pages of the slides to make the whole thing mroe readable.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • docs/trunk/omega-test-slides/omega-test.tex

    r205 r206
    9393
    9494\note{We are checking if any of array indexes can be equal to each other
    95 within the bounds of the array. So we set (削除) the (削除ここまで) indexes equal in an
    95 within the bounds of the array. So we set (追記) a pair of (追記ここまで) indexes equal in an
    9696 equation, and also add inequalities specifying that each index must
    9797 be within bounds.
    100100 No solution to any of the equations means the indexes are disjoint, and
    101101 hence the access is safe. If there is a solution to any of them, the
    102 access is unsafe(削除) (削除ここまで)}
    102 access is unsafe(追記) . (追記ここまで)}
    103103
    104104\end{frame}
    318318\begin{frame}
    319319\fullframegraph{Inequalities}{inequality-normal}
    320\note{This is an acceptable pair of inequalities(削除) (削除ここまで)}
    320\note{This is an acceptable pair of inequalities(追記) with parallel bounds. (追記ここまで)}
    321321\end{frame}
    322322
    323323\begin{frame}
    324324\fullframegraph{Unsolveable Inequalities}{inequality-unsolveable}
    325\note{This is an unsolveable pair of inequalities(削除) ; there is no overlap between the two regions (削除ここまで)}
    325\note{This is an unsolveable pair of inequalities(追記) (with parallel bounds); there is no overlap between the two regions. (追記ここまで)}
    326326\end{frame}
    327327
    330330\note{Here, the green inequality is redundant; anything in the red area
    331331is also in the green area, so we should only concern ourselves with the
    332red area (and drop the green inequality).}
    332red area (and drop the green inequality). You can also think of it as
    333taking the stricter equality of the two.}
    333334\end{frame}
    334335
    371372is irrelevant.}}
    372373\only<2>{\fullframegraph{Normalising Inequalities}{inequality-tightening-2}
    373\note{We can eliminate this wastefulness by effectively "snap(削除) (削除ここまで)-to-grid". We
    374\note{We can eliminate this wastefulness by effectively "snap(追記) ping (追記ここまで)-to-grid". We
    374375move the inequality in a direction perpendicular to its line (informally,
    375(削除) "towards the red") until it hits (削除ここまで) the first cross(es). This is now shown
    376(追記) ``towards the rest of the red region'') until it ``hits'' (追記ここまで) the first cross(es). This is now shown
    376377on the graph.}}
    377378\only<3>{\fullframegraph{Normalising Inequalities}{inequality-tightening-3}}
    422423\only<2>{\fullframegraph{Eliminate $x$}{inequality-scalene-4}}
    423424\only<3>{\fullframegraph{Eliminate $x$}{inequality-scalene-5}
    424\note{Similarly, in order for a point to be in both the re(削除) a (削除ここまで)d and
    425\note{Similarly, in order for a point to be in both the re(追記) (追記ここまで)d and
    425426blue regions, it must be above ($y$ axis again) the point at which
    426427they join ($y=1$). Therefore our new inequality is $y \geq 1$. This
    453454\text{\textcolor{KentRed}{Red}}\wedge\text{\textcolor{KentBlue}{Blue}:} & 10 - 4y &\leq 2x \leq 7 - y \implies &y \geq 1
    454455\end{array}$
    456(追記) (追記ここまで)
    457(追記) \note{This is an example/preview of the more detailed method to come. (追記ここまで)
    458(追記) But briefly: we arrange each inequality to be in terms of a positive (追記ここまで)
    459(追記) multiple of $x,ドル then cross-multiply, join the inequalities together (追記ここまで)
    460(追記) and remove the central item involving $x$. Much more details follow.} (追記ここまで)
    455461
    456462\end{frame}
    479485%N.B. $a > 0,ドル $b > 0$
    480486
    487(追記) \only<2>{\note{ (追記ここまで)
    488(追記) We classify the inequalities with regards to the sign of the coefficient (追記ここまで)
    489(追記) of the variable we are looking to eliminate. We rearrange the inequality (追記ここまで)
    490(追記) so that on one side we have a positive multiple of $x_n,ドル and everything else (追記ここまで)
    491(追記) on the other side. Thus the sign determines whether we have a lower or (追記ここまで)
    492(追記) upper bound for $x_n$. (追記ここまで)
    493(追記) }} (追記ここまで)
    494(追記) (追記ここまで)
    481495\end{frame}
    482496
    501515 otherwise it would screw up the inequalities (multiplying
    502516 an inequality by a negative number reverses the direction
    503 of the inequality)(削除) (削除ここまで)}
    517 of the inequality)(追記) . (追記ここまで)}
    504518
    505519
    531545 the equation is solveable.}
    532546
    533(削除) (削除ここまで)\note{
    534(削除) (削除ここまで)\begin{itemize}
    535(削除) (削除ここまで)\item Set of constraints $C_R$ ($a\beta \leq b\alpha$ for all pairs) is real shadow of constraints $C$
    536
    537%(削除) (削除ここまで)New slide:
    538(削除) (削除ここまで)\item No integer solution to $C_R$ $\implies$ no integer solution to $C$
    539(削除) (削除ここまで)\item Integer solution to $C_R$ $\land$ no integer solution to $C$ $\implies$ $(\lnot \exists x: a\beta \leq abx \leq b\alpha)$
    540(削除) (削除ここまで)\item $\therefore$ Integer solution to $C_R$ $\land (\exists x: a\beta \leq abx \leq b\alpha) \implies $ integer solution to $C$
    541(削除) (削除ここまで)\end{itemize}
    542(削除) (削除ここまで)}
    547(追記) % (追記ここまで)\note{
    548(追記) % (追記ここまで)\begin{itemize}
    549(追記) % (追記ここまで)\item Set of constraints $C_R$ ($a\beta \leq b\alpha$ for all pairs) is real shadow of constraints $C$
    550%
    551%(追記) % (追記ここまで)New slide:
    552(追記) % (追記ここまで)\item No integer solution to $C_R$ $\implies$ no integer solution to $C$
    553(追記) % (追記ここまで)\item Integer solution to $C_R$ $\land$ no integer solution to $C$ $\implies$ $(\lnot \exists x: a\beta \leq abx \leq b\alpha)$
    554(追記) % (追記ここまで)\item $\therefore$ Integer solution to $C_R$ $\land (\exists x: a\beta \leq abx \leq b\alpha) \implies $ integer solution to $C$
    555(追記) % (追記ここまで)\end{itemize}
    556(追記) % (追記ここまで)}
    543557
    544558\end{frame}
    549563%\end{itemize}
    550564%$\operatorname{hasIntSol}(C_R) \land \lnot \operatorname{hasIntSol}(C) \implies (\lnot \exists x: a\beta \leq abx \leq b\alpha)$
    551(削除) \note{Using (削除ここまで):
    552(削除) (削除ここまで)
    553(削除) (削除ここまで) $(A \land \lnot B) \implies C$
    554(削除) (削除ここまで)
    555(削除) (削除ここまで) $\lnot (A \land \lnot B) \lor C$ (by definition)
    556(削除) (削除ここまで)
    557(削除) (削除ここまで) $(\lnot A \lor B) \lor C$ (De Morgan's Law)
    558(削除) (削除ここまで)
    559(削除) (削除ここまで) $(\lnot A \lor C) \lor B$ (Distributivity of Or)
    560(削除) (削除ここまで)
    561(削除) (削除ここまで) $\lnot (A \land \lnot C) \lor B$ (De Morgan's Law)
    562(削除) (削除ここまで)
    563(削除) (削除ここまで) $(A \land \lnot C) \implies B$ (by definition)
    564(削除) (削除ここまで)}
    565(追記) %\note{Last bullet point uses (追記ここまで):
    566(追記) % (追記ここまで)
    567(追記) % (追記ここまで) $(A \land \lnot B) \implies C$
    568(追記) % (追記ここまで)
    569(追記) % (追記ここまで) $\lnot (A \land \lnot B) \lor C$ (by definition)
    570(追記) % (追記ここまで)
    571(追記) % (追記ここまで) $(\lnot A \lor B) \lor C$ (De Morgan's Law)
    572(追記) % (追記ここまで)
    573(追記) % (追記ここまで) $(\lnot A \lor C) \lor B$ (Distributivity of Or)
    574(追記) % (追記ここまで)
    575(追記) % (追記ここまで) $\lnot (A \land \lnot C) \lor B$ (De Morgan's Law)
    576(追記) % (追記ここまで)
    577(追記) % (追記ここまで) $(A \land \lnot C) \implies B$ (by definition)
    578(追記) % (追記ここまで)}
    565579%$\operatorname{hasIntSol}(C_R) \land (\exists x: a\beta \leq abx \leq b\alpha) \implies \operatorname{hasIntSol}(C)$
    566580
    600614
    601615\only<4>{
    602\note{ We now translate this greater-than back into a greater-than-or-equal-to.}
    616\note{ We now translate this greater-than back into a greater-than-or-equal-to and factor.
    617 The last bullet is pointing out that if $a = 0$ or $b = 0,ドル the `dark' constraint
    618 will be the same as the `real' constraint. If this is the case across all
    619 bounds (which requires that either the coefficient in all upper bounds is one,
    620 or the coefficient in all lower bounds is one), $C_D = C_R,ドル which is termed
    621 an exact projection, and you can proceed solving this one problem.
    622 }
    603623}
    604624\only<4>
    672692\item $C_R$ is the real shadow of $C$ (variable removed)
    673693\item $C_D$ is the dark shadow of $C$ (window large enough)
    674\only<2>{ \note{
    675$(C_R = C_D) \implies (\operatorname{hasIntSol}(C) \iff \operatorname{hasIntSol}(C_R))$
    676$\lnot \operatorname{hasIntSol}(C_R) \implies \lnot \operatorname{hasIntSol}(C)$
    677$\operatorname{hasIntSol}(C_R) \land \operatorname{hasIntSol}(C_D) \implies \operatorname{hasIntSol}(C)$
    678If $\operatorname{hasIntSol}(C_R) \wedge \neg \operatorname{hasIntSol}(C_D) \wedge (C_R \neq C_D),ドル we can't yet tell the value of $\operatorname{hasIntSol}(C)$
    694\only<4>{ \note{
    695The logical formulae this table is derived from:
    696\begin{itemize}
    697\item $(C_R = C_D) \implies (\operatorname{hasIntSol}(C) \iff \operatorname{hasIntSol}(C_R))$
    698\item $\lnot \operatorname{hasIntSol}(C_R) \implies \lnot \operatorname{hasIntSol}(C)$
    699\item $\operatorname{hasIntSol}(C_R) \land \operatorname{hasIntSol}(C_D) \implies \operatorname{hasIntSol}(C)$
    700\end{itemize}
    701If $\operatorname{hasIntSol}(C_R) \wedge \neg \operatorname{hasIntSol}(C_D) \wedge (C_R \neq C_D),ドル we can't yet tell the value of $\operatorname{hasIntSol}(C)$ (the difficult case).
    679702} }
    680703\end{itemize}
    726749 \end{itemize}
    727750\end{itemize}
    751(追記) (追記ここまで)
    752(追記) \note{ According to the Omega Test paper, you take the (single) highest value of (追記ここまで)
    753(追記) $a$ from the upper bounds, and pair it with each value of $b$ from the (追記ここまで)
    754(追記) lower bounds. So you will end up with $a \times \operatorname{avg}(b)$ new Omega Tests to run! (追記ここまで)
    755(追記) (追記ここまで)
    756(追記) Thankfully, this step is very rarely needed. (追記ここまで)
    757(追記) } (追記ここまで)
    728758\end{frame}
    729759
Note: See TracChangeset for help on using the changeset viewer.

AltStyle によって変換されたページ (->オリジナル) /