Context Navigation


Changeset 165 for docs


Ignore:
Timestamp:
Jan 18, 2008, 8:05:39 PM (18 years ago)
Author:
neil.c.c.brown
Message:

Fixed up some more slides relating to the dark shadow, trying to make the reasoning behind it clearer

Location:
docs/trunk/omega-test-slides
Files:
2 added
1 edited

Legend:

Unmodified
Added
Removed
  • docs/trunk/omega-test-slides/omega-test.tex

    r164 r165
    562562\begin{frame}[fragile]
    563563\frametitle{Integers}
    564\only<1>{ \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line.png} \end{center} }
    565\only<1-2>{ \begin{align*}
    564\only<1>{ \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line-A.png} \end{center} }
    565\only<2>{ \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line-B.png} \end{center} }
    566\only<3>{ \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line.png} \end{center} }
    567\begin{align*}
    566568% I can explain it without this equation, and I think it's easier that way:
    567569%\only<1>{\neg \exists x: a\beta \leq abx \leq b\alpha &\implies b\alpha - a\beta \leq ab - a - b \\ }
    568\only<1-2>{ b\alpha - a\beta > ab - a - b &\implies \exists x: a\beta \leq abx \leq b\alpha \\ }
    569\only<2>{ b\alpha - a\beta \geq ab - a - b + 1 &\implies \ldots \\
    570b\alpha - a\beta \geq (a - 1)(b - 1) &\implies \ldots }
    571 \end{align*} }
    572\note{$A \implies B$
    570\only<1>{ b\alpha - a\beta \geq ab &\implies \exists x: a\beta \leq abx \leq b\alpha }
    571\only<2>{ b\alpha - a\beta > ab - 1 &\implies \exists x: a\beta \leq abx \leq b\alpha }
    572\only<3-4>{ b\alpha - a\beta > ab - a - b &\implies \exists x: a\beta \leq abx \leq b\alpha \\}
    573\only<4>{ b\alpha - a\beta \geq ab - a - b + 1 &\implies \ldots \\
    574b\alpha - a\beta \geq (a - 1)(b - 1) &\implies \ldots}
    575\end{align*}
    576\only<4>{ \note{$A \implies B$
    573577
    574578 $\lnot A \lor B$ (by definition)
    577581
    578582 $\lnot B \implies \lnot A$ (by definition)
    579}(削除) (削除ここまで)
    580\only<(削除) 2 (削除ここまで)>
    583}(追記) } (追記ここまで)
    584\only<(追記) 4 (追記ここまで)>
    581585{
    582586\begin{itemize}
    583\item Term this constraint $C_D$ (the (削除) dark shadow). $C_D$ has an integer solution $\implies \exists x: a\beta \leq abx \leq b\alpha$ (削除ここまで)
    584\item If both $C_R$ (削除) and $C_D$ (削除ここまで) have an integer solution, so does $C$
    587\item Term this constraint $C_D$ (the (追記) ``dark'' shadow) (追記ここまで)
    588\item If both $C_R$ (追記) (variable removed) and $C_D$ (window large enough) (追記ここまで) have an integer solution, so does $C$
    585589\item N.B. $a = 1 \vee b = 1 \implies b\alpha - a\beta \geq 0 \implies b\alpha \geq a\beta$
    586590\end{itemize}
    646650
    647651\begin{itemize}
    648\item $C_R$ is the real shadow of $C,ドル $C_D$ is the dark shadow of $C$
    652\item $C_R$ is the real shadow of $C$ (variable removed)
    653\item $C_D$ is the dark shadow of $C$ (window large enough)
    649654\note{
    650655$(C_R = C_D) \implies (\operatorname{hasIntSol}(C) \iff \operatorname{hasIntSol}(C_R))$
    681686\frametitle{What do we know in the difficult case?}
    682687\begin{itemize}
    683\item $(削除) (削除ここまで)b\alpha - a\beta \leq ab - a - b$
    684\item $(削除) (削除ここまで)a\beta \leq b\alpha$
    688\item $(追記) \lnot hasIntSol(C_D) \implies (追記ここまで)b\alpha - a\beta \leq ab - a - b$
    689\item $(追記) hasIntSol(C_R) \implies (追記ここまで)a\beta \leq b\alpha$
    685690\item If there is a solution:
    686691 \begin{itemize}
    687 \item $(削除) (削除ここまで)a\beta \leq abx \leq b\alpha$
    688 \item $\therefore (削除) (削除ここまで)a\beta \leq abx \leq ab - a - b + a\beta$
    692 \item $(追記) \exists x: (追記ここまで)a\beta \leq abx \leq b\alpha$
    693 \item $\therefore (追記) \exists x: (追記ここまで)a\beta \leq abx \leq ab - a - b + a\beta$
    689694 \end{itemize}
    690695\end{itemize}
Note: See TracChangeset for help on using the changeset viewer.

AltStyle によって変換されたページ (->オリジナル) /