- Timestamp:
- Jan 18, 2008, 8:05:39 PM (18 years ago)
- Author:
- neil.c.c.brown
- Message:
-
Fixed up some more slides relating to the dark shadow, trying to make the reasoning behind it clearer
- Location:
- docs/trunk/omega-test-slides
- Files:
-
- 2 added
- 1 edited
- Omega-Test-Number-Line-A.png (added)
- Omega-Test-Number-Line-B.png (added)
- omega-test.tex (modified) (4 diffs)
Legend:
- Unmodified
- Added
- Removed
-
docs/trunk/omega-test-slides/omega-test.tex
r164 r165 562 562 \begin{frame}[fragile] 563 563 \frametitle{Integers} 564 \only<1>{ \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line.png} \end{center} } 565 \only<1-2>{ \begin{align*} 564 \only<1>{ \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line-A.png} \end{center} } 565 \only<2>{ \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line-B.png} \end{center} } 566 \only<3>{ \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line.png} \end{center} } 567 \begin{align*} 566 568 % I can explain it without this equation, and I think it's easier that way: 567 569 %\only<1>{\neg \exists x: a\beta \leq abx \leq b\alpha &\implies b\alpha - a\beta \leq ab - a - b \\ } 568 \only<1-2>{ b\alpha - a\beta > ab - a - b &\implies \exists x: a\beta \leq abx \leq b\alpha \\ } 569 \only<2>{ b\alpha - a\beta \geq ab - a - b + 1 &\implies \ldots \\ 570 b\alpha - a\beta \geq (a - 1)(b - 1) &\implies \ldots } 571 \end{align*} } 572 \note{$A \implies B$ 570 \only<1>{ b\alpha - a\beta \geq ab &\implies \exists x: a\beta \leq abx \leq b\alpha } 571 \only<2>{ b\alpha - a\beta > ab - 1 &\implies \exists x: a\beta \leq abx \leq b\alpha } 572 \only<3-4>{ b\alpha - a\beta > ab - a - b &\implies \exists x: a\beta \leq abx \leq b\alpha \\} 573 \only<4>{ b\alpha - a\beta \geq ab - a - b + 1 &\implies \ldots \\ 574 b\alpha - a\beta \geq (a - 1)(b - 1) &\implies \ldots} 575 \end{align*} 576 \only<4>{ \note{$A \implies B$ 573 577 574 578 $\lnot A \lor B$ (by definition) … … 577 581 578 582 $\lnot B \implies \lnot A$ (by definition) 579 } (削除) (削除ここまで)580 \only< (削除) 2 (削除ここまで)>583 }(追記) } (追記ここまで) 584 \only<(追記) 4 (追記ここまで)> 581 585 { 582 586 \begin{itemize} 583 \item Term this constraint $C_D$ (the (削除) dark shadow). $C_D$ has an integer solution $\implies \exists x: a\beta \leq abx \leq b\alpha$ (削除ここまで)584 \item If both $C_R$ (削除) and $C_D$ (削除ここまで)have an integer solution, so does $C$587 \item Term this constraint $C_D$ (the (追記) ``dark'' shadow) (追記ここまで) 588 \item If both $C_R$ (追記) (variable removed) and $C_D$ (window large enough) (追記ここまで) have an integer solution, so does $C$ 585 589 \item N.B. $a = 1 \vee b = 1 \implies b\alpha - a\beta \geq 0 \implies b\alpha \geq a\beta$ 586 590 \end{itemize} … … 646 650 647 651 \begin{itemize} 648 \item $C_R$ is the real shadow of $C,ドル $C_D$ is the dark shadow of $C$ 652 \item $C_R$ is the real shadow of $C$ (variable removed) 653 \item $C_D$ is the dark shadow of $C$ (window large enough) 649 654 \note{ 650 655 $(C_R = C_D) \implies (\operatorname{hasIntSol}(C) \iff \operatorname{hasIntSol}(C_R))$ … … 681 686 \frametitle{What do we know in the difficult case?} 682 687 \begin{itemize} 683 \item $ (削除) (削除ここまで)b\alpha - a\beta \leq ab - a - b$684 \item $ (削除) (削除ここまで)a\beta \leq b\alpha$688 \item $(追記) \lnot hasIntSol(C_D) \implies (追記ここまで)b\alpha - a\beta \leq ab - a - b$ 689 \item $(追記) hasIntSol(C_R) \implies (追記ここまで)a\beta \leq b\alpha$ 685 690 \item If there is a solution: 686 691 \begin{itemize} 687 \item $ (削除) (削除ここまで)a\beta \leq abx \leq b\alpha$688 \item $\therefore (削除) (削除ここまで)a\beta \leq abx \leq ab - a - b + a\beta$692 \item $(追記) \exists x: (追記ここまで)a\beta \leq abx \leq b\alpha$ 693 \item $\therefore (追記) \exists x: (追記ここまで)a\beta \leq abx \leq ab - a - b + a\beta$ 689 694 \end{itemize} 690 695 \end{itemize}
Note:
See TracChangeset
for help on using the changeset viewer.