Changeset 143
- Timestamp:
- Dec 31, 2007, 12:24:13 PM (18 years ago)
- Author:
- neil.c.c.brown
- Message:
-
Added a number line explanation about the exhaustive search
- Location:
- docs/trunk/omega-test-slides
- Files:
-
- 1 added
- 1 edited
- Omega-Test-Number-Line-3.png (added)
- omega-test.tex (modified) (4 diffs)
Legend:
- Unmodified
- Added
- Removed
-
docs/trunk/omega-test-slides/omega-test.tex
r142 r143 599 599 600 600 \begin{frame}[fragile] 601 \frametitle{F (削除) inal F (削除ここまで)low Chart}601 \frametitle{F(追記) (追記ここまで)low Chart} 602 602 \biggraph{Omega-Flowchart-M1} 603 603 \end{frame} … … 605 605 \subsection{Last Resort} 606 606 607 608 %TODO explain what to do in the difficult case! 609 607 \begin{frame}[fragile] 608 \frametitle{What do we know?} 609 \begin{itemize} 610 \item $b\alpha - a\beta \leq ab - a - b$ 611 \item $a\beta \leq b\alpha$ 612 \item If there is a solution: 613 \begin{itemize} 614 \item $a\beta \leq abx \leq b\alpha$ 615 \item $\therefore a\beta \leq abx \leq ab - a - b + a\beta$ 616 \end{itemize} 617 \end{itemize} 618 \end{frame} 619 620 \begin{frame}[fragile] 621 \frametitle{Narrowing it down} 622 \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line-3.png} \end{center} 623 \begin{itemize} 624 \item Check all multiples of $a$ in the given region 625 \item Consider the problem with each equality: $abx = a\beta + ac$ for integer $c$ such that: 0ドル \leq ac \leq ab - a - b$ 626 \begin{itemize} 627 \item Computationally expensive! 628 \item But rarely needed 629 \end{itemize} 630 \end{itemize} 631 \end{frame} 610 632 611 633 \begin{frame}[fragile] … … 807 829 \section{Answers to Code} 808 830 831 (追記) %\begin{frame} (追記ここまで) 832 (追記) %\frametitle{Relaying the Answers} (追記ここまで) 833 (追記) %\begin{itemize} (追記ここまで) 834 (追記) %\item We only stop when 0 or 1 variables remain in inequalities (追記ここまで) 835 (追記) %\item If 0, all variables solved by equality (追記ここまで) 836 (追記) %\end{frame} (追記ここまで) 837 (追記) (追記ここまで) 809 838 %Need an equality example with a step that has no unit coefficient: 810 839 … … 870 899 \end{frame} 871 900 872 %Adapting previous problem: 873 874 % 55 <= -19sigma <= 57 875 % (Subst: z = -3sigma - 15) 876 % -12sigma - 4z = 60 (=> -3sigma - z = 15), 40 <= z - 16sigma <= 42 877 % (subst: 4sigma = -x + z - 1, therefore x = z - 4sigma - 1) 878 % 3x - 7z = 57, 37 <= 4x - 3z <= 39 879 % (subst: y = 5x + 3z) 880 % 5x - y + 3z = 0, 18x - 3y + 2z = 57, 37 <= 14x - 2y + 3z <= 39 881 882 %TODO change the bounds above (37,39) so that more than one value of sigma will lie between them. 883 %In the current problem, normalising sigma turns the problem into an equality (I think - check that too) 884 885 \begin{frame}<1-4> [fragile] 886 \frametitle{A Worked Problem} 887 \begin{tabular}{ll} 888 Substitution & Equations \\ \hline 889 890 ~ & $\begin{array}{rrrrcr} 891 & 5x &- y + & 3z & = & 0 \\ 892 & 18x &- 3y + & 2z & = & 57 \\ 893 37 \leq & 14x &- 2y + &3z &\leq& 39 \end{array}$ 894 895 \\ \hline 896 \only<2->{ 897 $y = 5x + 3z$ & 898 $\begin{array}{rrrcr} 899 & 3x &- 7z &=& 57 \\ 900 37 \leq & 4x &- 3z &\leq& 39 \end{array}$} 901 902 \\ \hline 903 \only<3->{ 904 $x = -4\sigma + z - 1$ & 905 $\begin{array}{rrrcr} 906 &-3\sigma &- z &=& 15 \\ 907 40 \leq &-16\sigma &+ z &\leq& 42 \end{array}$} 908 909 \\ \hline 910 \only<4->{ 911 $z = -3\sigma - 15$ & 912 55ドル \leq -19\sigma \leq 57$} 913 914 \end{tabular} 915 916 \only<4->{where $-19\sigma = \ldots$?} 917 918 \end{frame} 919 920 %TODO explain why we can't divide in these examples 921 922 \begin{frame}<1-4> [fragile] 923 \frametitle{A Worked Problem} 924 \begin{tabular}{ll} 925 Rev Substitution & Rev Equations \\ \hline 926 927 & \only<4->{$-120 \leq 19z \leq -114$} 928 929 930 \\ \hline 931 \only<1>{$z = -3\sigma - 15$} \only<2->{3ドル\sigma = -z - 15$} 932 & \only<1-2>{55ドル \leq -19\sigma \leq 57$} \only<3>{165ドル \leq -57\sigma \leq 171$} 933 934 \end{tabular} 935 936 \only<4>{Error message: Unsafe when $-120 \leq 19z \leq -114,ドル 3ドルx + z = -63$ and $y = 5x + 3z$. Good luck!} 937 938 %TODO need to understand the omega test a little better to know all possible ways to improve this 939 940 %TODO the error will be more complex if there are fewer equalities (one); mainly inequalities 941 942 %TODO If we only have a solution when there are 0 or 1 vars left, we can just set the 1 var 943 %equal to its remaining bound and then use the equality-substitution method. Just need to 944 %check this is possible for the exhaustive search method - I think so 945 946 \end{frame} 947 948 949 950 %TODO work through an example showing how to get the answer back to code (i.e. solution -> code) 901 %TODO while we might end with 0-1 vars always, all but the last var will have 902 %been projected away. So we may have a solution in sigma, with all the original 903 %variables projected away. So we might need some cleverness to get the original 904 %variables back after all; substitution into the bounds? 951 905 952 906 \section{Future Work}
Note:
See TracChangeset
for help on using the changeset viewer.