Context Navigation


Changeset 143


Ignore:
Timestamp:
Dec 31, 2007, 12:24:13 PM (18 years ago)
Author:
neil.c.c.brown
Message:

Added a number line explanation about the exhaustive search

Location:
docs/trunk/omega-test-slides
Files:
1 added
1 edited

Legend:

Unmodified
Added
Removed
  • docs/trunk/omega-test-slides/omega-test.tex

    r142 r143
    599599
    600600\begin{frame}[fragile]
    601\frametitle{F(削除) inal F (削除ここまで)low Chart}
    601\frametitle{F(追記) (追記ここまで)low Chart}
    602602\biggraph{Omega-Flowchart-M1}
    603603\end{frame}
    605605\subsection{Last Resort}
    606606
    607
    608%TODO explain what to do in the difficult case!
    609
    607\begin{frame}[fragile]
    608\frametitle{What do we know?}
    609\begin{itemize}
    610\item $b\alpha - a\beta \leq ab - a - b$
    611\item $a\beta \leq b\alpha$
    612\item If there is a solution:
    613 \begin{itemize}
    614 \item $a\beta \leq abx \leq b\alpha$
    615 \item $\therefore a\beta \leq abx \leq ab - a - b + a\beta$
    616 \end{itemize}
    617\end{itemize}
    618\end{frame}
    619
    620\begin{frame}[fragile]
    621\frametitle{Narrowing it down}
    622\begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line-3.png} \end{center}
    623\begin{itemize}
    624\item Check all multiples of $a$ in the given region
    625\item Consider the problem with each equality: $abx = a\beta + ac$ for integer $c$ such that: 0ドル \leq ac \leq ab - a - b$
    626 \begin{itemize}
    627 \item Computationally expensive!
    628 \item But rarely needed
    629 \end{itemize}
    630\end{itemize}
    631\end{frame}
    610632
    611633\begin{frame}[fragile]
    807829\section{Answers to Code}
    808830
    831(追記) %\begin{frame} (追記ここまで)
    832(追記) %\frametitle{Relaying the Answers} (追記ここまで)
    833(追記) %\begin{itemize} (追記ここまで)
    834(追記) %\item We only stop when 0 or 1 variables remain in inequalities (追記ここまで)
    835(追記) %\item If 0, all variables solved by equality (追記ここまで)
    836(追記) %\end{frame} (追記ここまで)
    837(追記) (追記ここまで)
    809838%Need an equality example with a step that has no unit coefficient:
    810839
    870899\end{frame}
    871900
    872%Adapting previous problem:
    873
    874% 55 <= -19sigma <= 57
    875% (Subst: z = -3sigma - 15)
    876% -12sigma - 4z = 60 (=> -3sigma - z = 15), 40 <= z - 16sigma <= 42
    877% (subst: 4sigma = -x + z - 1, therefore x = z - 4sigma - 1)
    878% 3x - 7z = 57, 37 <= 4x - 3z <= 39
    879% (subst: y = 5x + 3z)
    880% 5x - y + 3z = 0, 18x - 3y + 2z = 57, 37 <= 14x - 2y + 3z <= 39
    881
    882%TODO change the bounds above (37,39) so that more than one value of sigma will lie between them.
    883%In the current problem, normalising sigma turns the problem into an equality (I think - check that too)
    884
    885\begin{frame}<1-4> [fragile]
    886\frametitle{A Worked Problem}
    887\begin{tabular}{ll}
    888Substitution & Equations \\ \hline
    889
    890~ & $\begin{array}{rrrrcr}
    891 & 5x &- y + & 3z & = & 0 \\
    892 & 18x &- 3y + & 2z & = & 57 \\
    893 37 \leq & 14x &- 2y + &3z &\leq& 39 \end{array}$
    894
    895\\ \hline
    896\only<2->{
    897$y = 5x + 3z$ &
    898$\begin{array}{rrrcr}
    899 & 3x &- 7z &=& 57 \\
    900 37 \leq & 4x &- 3z &\leq& 39 \end{array}$}
    901
    902\\ \hline
    903\only<3->{
    904$x = -4\sigma + z - 1$ &
    905$\begin{array}{rrrcr}
    906 &-3\sigma &- z &=& 15 \\
    90740 \leq &-16\sigma &+ z &\leq& 42 \end{array}$}
    908
    909\\ \hline
    910\only<4->{
    911$z = -3\sigma - 15$ &
    91255ドル \leq -19\sigma \leq 57$}
    913
    914\end{tabular}
    915
    916\only<4->{where $-19\sigma = \ldots$?}
    917
    918\end{frame}
    919
    920%TODO explain why we can't divide in these examples
    921
    922\begin{frame}<1-4> [fragile]
    923\frametitle{A Worked Problem}
    924\begin{tabular}{ll}
    925Rev Substitution & Rev Equations \\ \hline
    926
    927& \only<4->{$-120 \leq 19z \leq -114$}
    928
    929
    930\\ \hline
    931\only<1>{$z = -3\sigma - 15$} \only<2->{3ドル\sigma = -z - 15$}
    932& \only<1-2>{55ドル \leq -19\sigma \leq 57$} \only<3>{165ドル \leq -57\sigma \leq 171$}
    933
    934\end{tabular}
    935
    936\only<4>{Error message: Unsafe when $-120 \leq 19z \leq -114,ドル 3ドルx + z = -63$ and $y = 5x + 3z$. Good luck!}
    937
    938%TODO need to understand the omega test a little better to know all possible ways to improve this
    939
    940%TODO the error will be more complex if there are fewer equalities (one); mainly inequalities
    941
    942%TODO If we only have a solution when there are 0 or 1 vars left, we can just set the 1 var
    943%equal to its remaining bound and then use the equality-substitution method. Just need to
    944%check this is possible for the exhaustive search method - I think so
    945
    946\end{frame}
    947
    948
    949
    950%TODO work through an example showing how to get the answer back to code (i.e. solution -> code)
    901%TODO while we might end with 0-1 vars always, all but the last var will have
    902%been projected away. So we may have a solution in sigma, with all the original
    903%variables projected away. So we might need some cleverness to get the original
    904%variables back after all; substitution into the bounds?
    951905
    952906\section{Future Work}
Note: See TracChangeset for help on using the changeset viewer.

AltStyle によって変換されたページ (->オリジナル) /