Context Navigation


Changeset 142 for docs


Ignore:
Timestamp:
Dec 31, 2007, 2:47:22 AM (18 years ago)
Author:
neil.c.c.brown
Message:

Tidied up the slides about the dark shadow -- should be much more readable now

File:
1 edited

Legend:

Unmodified
Added
Removed
  • docs/trunk/omega-test-slides/omega-test.tex

    r141 r142
    489489\begin{frame}[fragile]
    490490\frametitle{Integers}
    491\includegraphics[width=100mm]{Omega-Test-Number-Line.png}
    492
    493$\neg \exists x: a\beta \leq abx \leq b\alpha \implies b\alpha - a\beta \leq ab - a - b$
    494
    495Using $A \implies B = \lnot B \implies \lnot A$:
    496
    491\only<1>{ \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line.png} \end{center} }
    492\only<1-2>{ \begin{align*}
    493% I can explain it without this equation, and I think it's easier that way:
    494%\only<1>{\neg \exists x: a\beta \leq abx \leq b\alpha &\implies b\alpha - a\beta \leq ab - a - b \\ }
    495\only<1-2>{ b\alpha - a\beta > ab - a - b &\implies \exists x: a\beta \leq abx \leq b\alpha \\ }
    496\only<2>{ b\alpha - a\beta \geq ab - a - b + 1 &\implies \ldots \\
    497b\alpha - a\beta \geq (a - 1)(b - 1) &\implies \ldots }
    498 \end{align*} }
    497499\note{$A \implies B$
    498500
    503505 $\lnot B \implies \lnot A$ (by definition)
    504506}
    505
    506$b\alpha - a\beta > ab - a - b \implies \exists x: a\beta \leq abx \leq b\alpha$
    507
    508$b\alpha - a\beta \geq ab - a - b + 1 \implies \ldots$
    509
    510$b\alpha - a\beta \geq (a - 1)(b - 1) \implies \ldots$
    511
    512Term this constraint $C_D$. $\operatorname{hasIntSol}(C_D) \implies \exists x: a\beta \leq abx \leq b\alpha$.
    513Therefore $\operatorname{hasIntSol}(C_R) \land \operatorname{hasIntSol}(C_D) \implies \operatorname{hasIntSol}(C)$
    514
    515N.B. $a = 1 \vee b = 1 \implies b\alpha - a\beta \geq 0 \implies b\alpha \geq a\beta$
    516
    507\only<2>
    508{
    509\begin{itemize}
    510\item Term this constraint $C_D$ (the dark shadow). $C_D$ has an integer solution $\implies \exists x: a\beta \leq abx \leq b\alpha$
    511\item If both $C_R$ and $C_D$ have an integer solution, so does $C$
    512\item N.B. $a = 1 \vee b = 1 \implies b\alpha - a\beta \geq 0 \implies b\alpha \geq a\beta$
    513\end{itemize}
    514}
    517515
    518516\end{frame}
Note: See TracChangeset for help on using the changeset viewer.

AltStyle によって変換されたページ (->オリジナル) /