Context Navigation


Changeset 136 for docs


Ignore:
Timestamp:
Dec 30, 2007, 9:45:23 PM (18 years ago)
Author:
neil.c.c.brown
Message:

Removed the inclusion of all the old 3D graphs and put in the new 2D version

Location:
docs/trunk/omega-test-slides
Files:
1 edited
1 copied

Legend:

Unmodified
Added
Removed
  • docs/trunk/omega-test-slides/equality-incon.gnu

    r135 r136
    11load "2d-gnuplot-settings.inc"
    22
    3set title "(削除) Unsolveable Equation (削除ここまで)"
    3set title "(追記) Inconsistent Equations (追記ここまで)"
    44
    55set multiplot
    99set key bottom right
    1010
    11plot (削除) x + 0.5 title "2y = 2x + 1" ls 3 (削除ここまで) with lines
    11plot (追記) ((2*x + 1)/3) title "3y = 2x + 1" ls 3 with lines, ((2*x + 2)/3) title "3y = 2x + 2" ls 4 (追記ここまで) with lines
  • docs/trunk/omega-test-slides/omega-test.tex

    r135 r136
    190190\end{frame}
    191191
    192
    193%TODO show a graph with two planes in the same place (if that's even possible?)
    194
    195%Show a graph with two parallel planes:
    196
    197\begin{frame}[fragile]
    198\frametitle{Inconsistent Equality}
    199\biggraph{equality-1-par}
    200
    201Rule: Identical coeffs but different constant $\implies$ unsolveable.
    202\end{frame}
    203
    204%Show a graph with two planes intersecting in a line:
    205
    206\begin{frame}[fragile]
    207\fullframegraph{Equalities}{equality-2}
    208\end{frame}
    209
    210%Show a graph with three planes intersecting in a line:
    211
    212\begin{frame}[fragile]
    213\fullframegraph{Equalities}{equality-3}
    214\end{frame}
    215
    216%This is the maths of the three planes intersecting in a line:
    217
    218\begin{frame}[fragile]
    219\frametitle{The Maths}
    220$\begin{array}{rrcr}
    2213x - y + & z & = & 30 \\
    222x + y + & 3z & = & 50 \\
    223%goes to: 4x + 4z = 80, x + z = 20, z = 20 - x. y = 3x + z - 30
    224% Two points this line goes through are: (10,10,10) + (11,12,9)
    225% Therefore (10,10,10) + t(1,2,-1), or (5,0,15) + t(1,2,-1)
    226% Another random point: (25,10,0), therefore another vector in the plane
    227% is (3,0,-2)
    228
    229%Therefore another plane that contains this line satisfies:
    230% 5 + t + 3u = x
    231% 2t = y
    232% 15 - t - 2u = z
    233% gives:
    234% t = y/2, u = x + z - 20
    235% So the plane is:
    236% 5 + y/2 + 3x + 3z - 60 = x
    237% 4x + y + 6z = 110
    2384x + y + & 6z & = & 110
    239\end{array}$
    240
    241Subst. $y = 3x + z - 30$ into latter two:
    242
    243$\begin{array}{rrcr}
    2444x + & 4z & = & 80 \\
    2457x + & 7z & = & 140
    246\end{array}$
    247
    248After normalisation, equations are identical $\therefore$ redundant.
    249
    250\end{frame}
    251
    252\begin{frame}[fragile]
    253\frametitle{Flow Chart}
    254\biggraph{Omega-Flowchart-M5}
    255\end{frame}
    192\TurnLogoOff
    193
    194\begin{frame}[fragile]
    195\fullframegraph{Inconsistent Equalities}{equality-incon}
    196\end{frame}
    197
    198\TurnLogoOn
    199
    200\begin{frame}[fragile]
    201\frametitle{Equalities}
    202\begin{itemize}
    203\item If two equations have identical coefficients ($a_1 \cdots a_n$):
    204 \begin{itemize}
    205 \item If the constant terms ($a_0$) are equal, remove one of the equations
    206 \item If the constant terms are not equal, there is no solution
    207 \end{itemize}
    208\end{itemize}
    209\end{frame}
    210
    211%Flowchart is so simple at this point it doesn't seem worth showing it:
    212
    213%\begin{frame}[fragile]
    214%\frametitle{Flow Chart}
    215%\biggraph{Omega-Flowchart-M5}
    216%\end{frame}
    256217
    257218\begin{frame}
    261222\item Otherwise a special substitution is used:
    262223 \begin{itemize}
    263 \item $x_k = -\operatorname{sign}(a_k)m\sigma + \(削除) (削除ここまで)sum_{i \in V - \{k\}} \operatorname{sign}(a_k)(a_i \widehat{\operatorname{mod}} m)x_i$
    224 \item $x_k = -\operatorname{sign}(a_k)m\sigma + \(追記) displaystyle\ (追記ここまで)sum_{i \in V - \{k\}} \operatorname{sign}(a_k)(a_i \widehat{\operatorname{mod}} m)x_i$
    264225 \item See paper for details (no simple explanation)
    265226 %TODO try to think of a simple explanation, if possible
Note: See TracChangeset for help on using the changeset viewer.

AltStyle によって変換されたページ (->オリジナル) /