- Timestamp:
- Dec 30, 2007, 9:45:23 PM (18 years ago)
- Author:
- neil.c.c.brown
- Message:
-
Removed the inclusion of all the old 3D graphs and put in the new 2D version
- Location:
- docs/trunk/omega-test-slides
- Files:
-
- 1 edited
- 1 copied
- equality-incon.gnu (copied) (copied from docs/trunk/omega-test-slides/equality-nosol.gnu ) (2 diffs)
- omega-test.tex (modified) (2 diffs)
Legend:
- Unmodified
- Added
- Removed
-
docs/trunk/omega-test-slides/equality-incon.gnu
r135 r136 1 1 load "2d-gnuplot-settings.inc" 2 2 3 set title " (削除) Unsolveable Equation (削除ここまで)"3 set title "(追記) Inconsistent Equations (追記ここまで)" 4 4 5 5 set multiplot … … 9 9 set key bottom right 10 10 11 plot (削除) x + 0.5 title "2y = 2x + 1" ls 3 (削除ここまで)with lines11 plot (追記) ((2*x + 1)/3) title "3y = 2x + 1" ls 3 with lines, ((2*x + 2)/3) title "3y = 2x + 2" ls 4 (追記ここまで) with lines -
docs/trunk/omega-test-slides/omega-test.tex
r135 r136 190 190 \end{frame} 191 191 192 193 %TODO show a graph with two planes in the same place (if that's even possible?) 194 195 %Show a graph with two parallel planes: 196 197 \begin{frame}[fragile] 198 \frametitle{Inconsistent Equality} 199 \biggraph{equality-1-par} 200 201 Rule: Identical coeffs but different constant $\implies$ unsolveable. 202 \end{frame} 203 204 %Show a graph with two planes intersecting in a line: 205 206 \begin{frame}[fragile] 207 \fullframegraph{Equalities}{equality-2} 208 \end{frame} 209 210 %Show a graph with three planes intersecting in a line: 211 212 \begin{frame}[fragile] 213 \fullframegraph{Equalities}{equality-3} 214 \end{frame} 215 216 %This is the maths of the three planes intersecting in a line: 217 218 \begin{frame}[fragile] 219 \frametitle{The Maths} 220 $\begin{array}{rrcr} 221 3x - y + & z & = & 30 \\ 222 x + y + & 3z & = & 50 \\ 223 %goes to: 4x + 4z = 80, x + z = 20, z = 20 - x. y = 3x + z - 30 224 % Two points this line goes through are: (10,10,10) + (11,12,9) 225 % Therefore (10,10,10) + t(1,2,-1), or (5,0,15) + t(1,2,-1) 226 % Another random point: (25,10,0), therefore another vector in the plane 227 % is (3,0,-2) 228 229 %Therefore another plane that contains this line satisfies: 230 % 5 + t + 3u = x 231 % 2t = y 232 % 15 - t - 2u = z 233 % gives: 234 % t = y/2, u = x + z - 20 235 % So the plane is: 236 % 5 + y/2 + 3x + 3z - 60 = x 237 % 4x + y + 6z = 110 238 4x + y + & 6z & = & 110 239 \end{array}$ 240 241 Subst. $y = 3x + z - 30$ into latter two: 242 243 $\begin{array}{rrcr} 244 4x + & 4z & = & 80 \\ 245 7x + & 7z & = & 140 246 \end{array}$ 247 248 After normalisation, equations are identical $\therefore$ redundant. 249 250 \end{frame} 251 252 \begin{frame}[fragile] 253 \frametitle{Flow Chart} 254 \biggraph{Omega-Flowchart-M5} 255 \end{frame} 192 \TurnLogoOff 193 194 \begin{frame}[fragile] 195 \fullframegraph{Inconsistent Equalities}{equality-incon} 196 \end{frame} 197 198 \TurnLogoOn 199 200 \begin{frame}[fragile] 201 \frametitle{Equalities} 202 \begin{itemize} 203 \item If two equations have identical coefficients ($a_1 \cdots a_n$): 204 \begin{itemize} 205 \item If the constant terms ($a_0$) are equal, remove one of the equations 206 \item If the constant terms are not equal, there is no solution 207 \end{itemize} 208 \end{itemize} 209 \end{frame} 210 211 %Flowchart is so simple at this point it doesn't seem worth showing it: 212 213 %\begin{frame}[fragile] 214 %\frametitle{Flow Chart} 215 %\biggraph{Omega-Flowchart-M5} 216 %\end{frame} 256 217 257 218 \begin{frame} … … 261 222 \item Otherwise a special substitution is used: 262 223 \begin{itemize} 263 \item $x_k = -\operatorname{sign}(a_k)m\sigma + \ (削除) (削除ここまで)sum_{i \in V - \{k\}} \operatorname{sign}(a_k)(a_i \widehat{\operatorname{mod}} m)x_i$224 \item $x_k = -\operatorname{sign}(a_k)m\sigma + \(追記) displaystyle\ (追記ここまで)sum_{i \in V - \{k\}} \operatorname{sign}(a_k)(a_i \widehat{\operatorname{mod}} m)x_i$ 264 225 \item See paper for details (no simple explanation) 265 226 %TODO try to think of a simple explanation, if possible
Note:
See TracChangeset
for help on using the changeset viewer.