- Timestamp:
- Dec 30, 2007, 6:56:00 PM (18 years ago)
- Author:
- neil.c.c.brown
- Message:
-
Put in an Omega Test section to properly introduce the Omega Test
- File:
-
- 1 edited
- docs/trunk/omega-test-slides/omega-test.tex (modified) (2 diffs)
Legend:
- Unmodified
- Added
- Removed
-
docs/trunk/omega-test-slides/omega-test.tex
r132 r133 123 123 %TODO maybe to be extra clear, show a typical problem? 124 124 125 \section{Terms, etc} 126 127 \begin{frame}[fragile] 128 \frametitle{Defining Terms} 125 \section{The Omega Test} 126 127 \begin{frame}[fragile] 128 \frametitle{The Omega Test} 129 \begin{itemize} 130 \item A linear integer equation solver 131 \item Inputs: 132 \begin{itemize} 133 \item Set of equalities 134 \item Set of inequalities ($\leq,\geq,ドル etc) 135 \end{itemize} 136 \item Output is integer solution or ``unsolveable'' 137 \item All equations are joined by $\land$ (AND); $\lor$ (OR) effectively creates multiple equation-sets. 138 \item Integer division is not reversible (and requires rational numbers), so is avoided. 139 \end{itemize} 140 \end{frame} 141 142 \begin{frame}[fragile] 143 \frametitle{Terms} 129 144 \begin{itemize} 130 145 \item General form of equations for $n$ variables ($x_1 \cdots x_n$): 131 146 \begin{itemize} 132 \item Equality: $\displaystyle\sum_{i=0}^n a_i x_i = 0$ 133 \item Inequality: $\displaystyle\sum_{i=0}^n a_i x_i \geq 0$ 147 \item Equality: $\displaystyle\sum_{i=0}^n a_i x_i = 0,ドル Inequality: $\displaystyle\sum_{i=0}^n a_i x_i \geq 0$ 134 148 \item $x_0 = 1, \therefore a_0$ is the constant term 135 149 \end{itemize} … … 139 153 \end{itemize} 140 154 \item Equations are kept normalised (GCD of coefficients $a_1 \cdots a_n$ is 1) 141 (削除) \end{itemize} (削除ここまで)142 (削除) \end{frame} (削除ここまで)143 (削除) (削除ここまで)144 (削除) \begin{frame}[fragile] (削除ここまで)145 (削除) \frametitle{$\land$ easy $\lor$ hard} (削除ここまで)146 (削除) \begin{itemize} (削除ここまで)147 (削除) \item All equations are joined by $\land$; $\lor$ effectively creates multiple equation-sets. (削除ここまで)148 (削除) \item Integer division is not reversible (and requires rational numbers), so is avoided. (削除ここまで)149 (削除) \item We are looking for integer solutions (削除ここまで)150 155 \end{itemize} 151 156 \end{frame}
Note:
See TracChangeset
for help on using the changeset viewer.