Changeset 115 for docs/trunk/omega-test-slides
- Timestamp:
- Dec 22, 2007, 7:52:36 PM (18 years ago)
- Author:
- neil.c.c.brown
- Message:
-
Added all sorts of mess to the slides, and a diagram
- Location:
- docs/trunk/omega-test-slides
- Files:
-
- 1 added
- 2 edited
- Omega-Test-Number-Line.png (added)
- crg-group-beamer.sty (modified) (1 diff)
- omega-test.tex (modified) (4 diffs)
Legend:
- Unmodified
- Added
- Removed
-
docs/trunk/omega-test-slides/crg-group-beamer.sty
r106 r115 1 \definecolor{KentBlue}{rgb}{0.0,0.2196,0.5098} (削除) (削除ここまで)2 \definecolor{KentRed}{rgb}{0.7058,0.0117,0.3607} (削除) (削除ここまで)3 \definecolor{KentGreen}{rgb}{0.0,0.4785,0.3686} (削除) (削除ここまで)1 \definecolor{KentBlue}{rgb}{0.0,0.2196,0.5098}(追記) % (追記ここまで) 2 \definecolor{KentRed}{rgb}{0.7058,0.0117,0.3607}(追記) % 180, 3, 92 (追記ここまで) 3 \definecolor{KentGreen}{rgb}{0.0,0.4785,0.3686}(追記) % 0, 122, 94 (追記ここまで) 4 4 5 5 \usepackage{pifont} -
docs/trunk/omega-test-slides/omega-test.tex
r113 r115 10 10 11 11 %4up 12 (追記) %notes (追記ここまで) 12 13 \usepackage{crg-group-beamer} 13 14 … … 86 87 \begin{itemize} 87 88 \item Equality: $\displaystyle\sum_{i=0}^n a_i x_i = 0$ 88 \item Inequality: $\displaystyle\sum_{i=0}^n a_i x_i (削除) >= (削除ここまで)0$89 \item Inequality: $\displaystyle\sum_{i=0}^n a_i x_i (追記) \geq (追記ここまで) 0$ 89 90 \item $x_0 = 1, \therefore a_0$ is the constant term 90 91 \end{itemize} … … 211 212 \end{itemize} 212 213 \end{itemize} 214 (追記) \end{frame} (追記ここまで) 215 (追記) (追記ここまで) 216 (追記) \begin{frame}[fragile] (追記ここまで) 217 (追記) \frametitle{Variable Elimination} (追記ここまで) 218 (追記) We want to eliminate the variables one by one. (追記ここまで) 219 (追記) Pick a variable (for illustration, $x_n$) and rephrase the set of inequalities 0ドル \leq \displaystyle\sum_{i=0}^n a_i x_i$ as: (追記ここまで) 220 (追記) (追記ここまで) 221 (追記) \begin{tabular}{cll} (追記ここまで) 222 (追記) $a_n$ & Rephrase & Bound\\ \hline (追記ここまで) 223 (追記) 0 & \textit{$x_n$ already eliminated} & \\ \hline (追記ここまで) 224 (追記) Pos & $\displaystyle\sum_{i=0}^{n-1} a_i x_i \leq a x_n$ where $a = a_n$ & Lower\\ \hline (追記ここまで) 225 (追記) Neg & $b x_n \leq \displaystyle\sum_{i=0}^{n-1} a_i x_i$ where $b = -a_n$ & Upper\\ \hline (追記ここまで) 226 (追記) (追記ここまで) 227 (追記) \end{tabular} (追記ここまで) 228 (追記) (追記ここまで) 229 (追記) N.B. $a > 0,ドル $b > 0$ (追記ここまで) 230 (追記) (追記ここまで) 231 (追記) \end{frame} (追記ここまで) 232 (追記) (追記ここまで) 233 (追記) \begin{frame}[fragile] (追記ここまで) 234 (追記) \frametitle{Bounding Pairs} (追記ここまで) 235 (追記) Consider each (upper,lower) bound pair on $x$: (追記ここまで) 236 (追記) (追記ここまで) 237 (追記) $\beta \leq bx$ and $ax \leq \alpha$ (追記ここまで) 238 (追記) (追記ここまで) 239 (追記) $a\beta \leq abx$ and $abx \leq b\alpha$ (追記ここまで) 240 (追記) (追記ここまで) 241 (追記) \note{It is important here that $a$ and $b$ are positive, (追記ここまで) 242 (追記) otherwise it would screw up the inequalities (multiplying (追記ここまで) 243 (追記) an inequality by a negative number reverses the direction (追記ここまで) 244 (追記) of the inequality)} (追記ここまで) 245 (追記) (追記ここまで) 246 (追記) $a\beta \leq abx \leq b\alpha$ (追記ここまで) 247 (追記) (追記ここまで) 248 (追記) We can eliminate $x$ ($a\beta \leq b\alpha$) but there may be solutions to that but not the original. (追記ここまで) 249 (追記) Consider 7ドル \leq 3x$ and 5ドルx \leq 14$; 35ドル \leq 42$ has a solution! (追記ここまで) 250 (追記) (追記ここまで) 251 (追記) \note{Bear in mind we are looking for integer solutions to $x$. (追記ここまで) 252 (追記) These examples (which are not normalised, merely illustrative) (追記ここまで) 253 (追記) have no integer solution for $x,ドル but after $x$ is eliminated (追記ここまで) 254 (追記) the equation is solveable.} (追記ここまで) 255 (追記) (追記ここまで) 256 (追記) \end{frame} (追記ここまで) 257 (追記) (追記ここまで) 258 (追記) %TODO can the above be shown *clearly* with graphics? The original paper doesn't do a good job (追記ここまで) 259 (追記) %TODO maybe the number line? (追記ここまで) 260 (追記) (追記ここまで) 261 (追記) \begin{frame}[fragile] (追記ここまで) 262 (追記) \frametitle{Shadows} (追記ここまで) 263 (追記) \begin{itemize} (追記ここまで) 264 (追記) \item Set of constraints $C_R$ ($a\beta \leq b\alpha$ for all pairs) is real shadow of constraints $C$. (追記ここまで) 265 (追記) %\item If ($L,ドル$U$) are the number of (lower,upper) bounds on eliminated variable, the real shadow introduces $L.U$ new equations. (追記ここまで) 266 (追記) \item We at least know: $\lnot \operatorname{hasIntSol}(C_R) \implies \lnot \operatorname{hasIntSol}(C)$ (追記ここまで) 267 (追記) \end{itemize} (追記ここまで) 268 (追記) $\operatorname{hasIntSol}(C_R) \land \lnot \operatorname{hasIntSol}(C) \implies (\lnot \exists x: a\beta \leq abx \leq b\alpha)$ (追記ここまで) 269 (追記) \note{Using: (追記ここまで) 270 (追記) (追記ここまで) 271 (追記) $(A \land \lnot B) \implies C$ (追記ここまで) 272 (追記) (追記ここまで) 273 (追記) $\lnot (A \land \lnot B) \lor C$ (by definition) (追記ここまで) 274 (追記) (追記ここまで) 275 (追記) $(\lnot A \lor B) \lor C$ (De Morgan's Law) (追記ここまで) 276 (追記) (追記ここまで) 277 (追記) $(\lnot A \lor C) \lor B$ (Distributivity of Or) (追記ここまで) 278 (追記) (追記ここまで) 279 (追記) $\lnot (A \land \lnot C) \lor B$ (De Morgan's Law) (追記ここまで) 280 (追記) (追記ここまで) 281 (追記) $(A \land \lnot C) \implies B$ (by definition) (追記ここまで) 282 (追記) } (追記ここまで) 283 (追記) $\operatorname{hasIntSol}(C_R) \land (\exists x: a\beta \leq abx \leq b\alpha) \implies \operatorname{hasIntSol}(C)$ (追記ここまで) 284 (追記) \end{frame} (追記ここまで) 285 (追記) (追記ここまで) 286 (追記) \begin{frame}[fragile] (追記ここまで) 287 (追記) \frametitle{Integers} (追記ここまで) 288 (追記) \includegraphics[width=100mm]{Omega-Test-Number-Line.png} (追記ここまで) 289 (追記) (追記ここまで) 290 (追記) $\neg \exists x: a\beta \leq abx \leq b\alpha \implies b\alpha - a\beta \leq ab - a - b$ (追記ここまで) 291 (追記) (追記ここまで) 292 (追記) \note{Using: (追記ここまで) 293 (追記) (追記ここまで) 294 (追記) $A \implies B$ (追記ここまで) 295 (追記) (追記ここまで) 296 (追記) $\lnot A \lor B$ (by definition) (追記ここまで) 297 (追記) (追記ここまで) 298 (追記) $\lnot A \lor \lnot \lnot B$ ($\lnot\lnot A = A$) (追記ここまで) 299 (追記) (追記ここまで) 300 (追記) $\lnot B \implies \lnot A$ (by definition) (追記ここまで) 301 (追記) } (追記ここまで) 302 (追記) (追記ここまで) 303 (追記) $b\alpha - a\beta > ab - a - b \implies \exists x: a\beta \leq abx \leq b\alpha$ (追記ここまで) 304 (追記) (追記ここまで) 305 (追記) $b\alpha - a\beta \geq ab - a - b + 1 \implies \ldots$ (追記ここまで) 306 (追記) (追記ここまで) 307 (追記) $b\alpha - a\beta \geq (a - 1)(b - 1) \implies \ldots$ (追記ここまで) 308 (追記) (追記ここまで) 309 (追記) Term this constraint $C_D$. $\operatorname{hasIntSol}(C_D) \implies \exists x: a\beta \leq abx \leq b\alpha$. (追記ここまで) 310 (追記) Therefore $\operatorname{hasIntSol}(C_R) \land \operatorname{hasIntSol}(C_D) \implies \operatorname{hasIntSol}(C)$ (追記ここまで) 311 (追記) (追記ここまで) 312 (追記) N.B. $a = 1 \vee b = 1 \implies b\alpha - a\beta \geq 0 \implies b\alpha \geq a\beta$ (追記ここまで) 313 (追記) (追記ここまで) 314 (追記) (追記ここまで) 213 315 \end{frame} 214 316 … … 268 370 % TODO wrap my head around this! 269 371 372 (追記) %TODO be careful - if a and b are identical, you still can't cancel them! (追記ここまで) 373 (追記) (追記ここまで) 374 (追記) \begin{frame}[fragile] (追記ここまで) 375 (追記) \frametitle{Real and Dark Shadows} (追記ここまで) 376 (追記) %True, but irrelevant here: (追記ここまで) 377 (追記) %$\forall X. \operatorname{hasIntSol}(X) \implies \operatorname{hasRealSol}(X)$ (追記ここまで) 378 (追記) (追記ここまで) 379 (追記) $C_R$ is the real shadow of $C,ドル $X_D$ is the dark shadow of $C$ (追記ここまで) 380 (追記) (追記ここまで) 381 (追記) $\forall X. (C_R = C_D) \implies (\operatorname{hasIntSol}(C) \iff \operatorname{hasIntSol}(C_R))$ (追記ここまで) 382 (追記) (追記ここまで) 383 (追記) $\forall X. \lnot \operatorname{hasIntSol}(C_R) \implies \lnot \operatorname{hasIntSol}(C)$ (追記ここまで) 384 (追記) $\operatorname{hasIntSol}(C_R) \land \operatorname{hasIntSol}(C_D) \implies \operatorname{hasIntSol}(C)$ (追記ここまで) 385 (追記) (追記ここまで) 386 (追記) If $\operatorname{hasIntSol}(X_R) \wedge \neg \operatorname{hasIntSol}(X_D) \wedge (X_R \neq X_D),ドル we can't yet tell the value of $\operatorname{hasIntSol}(X$ (追記ここまで) 387 (追記) (追記ここまで) 388 (追記) \end{frame} (追記ここまで) 389 (追記) (追記ここまで) 270 390 271 391 \section{Tricky Parts}
Note:
See TracChangeset
for help on using the changeset viewer.