Context Navigation



Ignore:
Timestamp:
Dec 22, 2007, 7:52:36 PM (18 years ago)
Author:
neil.c.c.brown
Message:

Added all sorts of mess to the slides, and a diagram

Location:
docs/trunk/omega-test-slides
Files:
1 added
2 edited

Legend:

Unmodified
Added
Removed
  • docs/trunk/omega-test-slides/crg-group-beamer.sty

    r106 r115
    1\definecolor{KentBlue}{rgb}{0.0,0.2196,0.5098}(削除) (削除ここまで)
    2\definecolor{KentRed}{rgb}{0.7058,0.0117,0.3607}(削除) (削除ここまで)
    3\definecolor{KentGreen}{rgb}{0.0,0.4785,0.3686}(削除) (削除ここまで)
    1\definecolor{KentBlue}{rgb}{0.0,0.2196,0.5098}(追記) % (追記ここまで)
    2\definecolor{KentRed}{rgb}{0.7058,0.0117,0.3607}(追記) % 180, 3, 92 (追記ここまで)
    3\definecolor{KentGreen}{rgb}{0.0,0.4785,0.3686}(追記) % 0, 122, 94 (追記ここまで)
    44
    55\usepackage{pifont}
  • docs/trunk/omega-test-slides/omega-test.tex

    r113 r115
    1010
    1111%4up
    12(追記) %notes (追記ここまで)
    1213\usepackage{crg-group-beamer}
    1314
    8687 \begin{itemize}
    8788 \item Equality: $\displaystyle\sum_{i=0}^n a_i x_i = 0$
    88 \item Inequality: $\displaystyle\sum_{i=0}^n a_i x_i (削除) >= (削除ここまで) 0$
    89 \item Inequality: $\displaystyle\sum_{i=0}^n a_i x_i (追記) \geq (追記ここまで) 0$
    8990 \item $x_0 = 1, \therefore a_0$ is the constant term
    9091 \end{itemize}
    211212 \end{itemize}
    212213\end{itemize}
    214(追記) \end{frame} (追記ここまで)
    215(追記) (追記ここまで)
    216(追記) \begin{frame}[fragile] (追記ここまで)
    217(追記) \frametitle{Variable Elimination} (追記ここまで)
    218(追記) We want to eliminate the variables one by one. (追記ここまで)
    219(追記) Pick a variable (for illustration, $x_n$) and rephrase the set of inequalities 0ドル \leq \displaystyle\sum_{i=0}^n a_i x_i$ as: (追記ここまで)
    220(追記) (追記ここまで)
    221(追記) \begin{tabular}{cll} (追記ここまで)
    222(追記) $a_n$ & Rephrase & Bound\\ \hline (追記ここまで)
    223(追記) 0 & \textit{$x_n$ already eliminated} & \\ \hline (追記ここまで)
    224(追記) Pos & $\displaystyle\sum_{i=0}^{n-1} a_i x_i \leq a x_n$ where $a = a_n$ & Lower\\ \hline (追記ここまで)
    225(追記) Neg & $b x_n \leq \displaystyle\sum_{i=0}^{n-1} a_i x_i$ where $b = -a_n$ & Upper\\ \hline (追記ここまで)
    226(追記) (追記ここまで)
    227(追記) \end{tabular} (追記ここまで)
    228(追記) (追記ここまで)
    229(追記) N.B. $a > 0,ドル $b > 0$ (追記ここまで)
    230(追記) (追記ここまで)
    231(追記) \end{frame} (追記ここまで)
    232(追記) (追記ここまで)
    233(追記) \begin{frame}[fragile] (追記ここまで)
    234(追記) \frametitle{Bounding Pairs} (追記ここまで)
    235(追記) Consider each (upper,lower) bound pair on $x$: (追記ここまで)
    236(追記) (追記ここまで)
    237(追記) $\beta \leq bx$ and $ax \leq \alpha$ (追記ここまで)
    238(追記) (追記ここまで)
    239(追記) $a\beta \leq abx$ and $abx \leq b\alpha$ (追記ここまで)
    240(追記) (追記ここまで)
    241(追記) \note{It is important here that $a$ and $b$ are positive, (追記ここまで)
    242(追記) otherwise it would screw up the inequalities (multiplying (追記ここまで)
    243(追記) an inequality by a negative number reverses the direction (追記ここまで)
    244(追記) of the inequality)} (追記ここまで)
    245(追記) (追記ここまで)
    246(追記) $a\beta \leq abx \leq b\alpha$ (追記ここまで)
    247(追記) (追記ここまで)
    248(追記) We can eliminate $x$ ($a\beta \leq b\alpha$) but there may be solutions to that but not the original. (追記ここまで)
    249(追記) Consider 7ドル \leq 3x$ and 5ドルx \leq 14$; 35ドル \leq 42$ has a solution! (追記ここまで)
    250(追記) (追記ここまで)
    251(追記) \note{Bear in mind we are looking for integer solutions to $x$. (追記ここまで)
    252(追記) These examples (which are not normalised, merely illustrative) (追記ここまで)
    253(追記) have no integer solution for $x,ドル but after $x$ is eliminated (追記ここまで)
    254(追記) the equation is solveable.} (追記ここまで)
    255(追記) (追記ここまで)
    256(追記) \end{frame} (追記ここまで)
    257(追記) (追記ここまで)
    258(追記) %TODO can the above be shown *clearly* with graphics? The original paper doesn't do a good job (追記ここまで)
    259(追記) %TODO maybe the number line? (追記ここまで)
    260(追記) (追記ここまで)
    261(追記) \begin{frame}[fragile] (追記ここまで)
    262(追記) \frametitle{Shadows} (追記ここまで)
    263(追記) \begin{itemize} (追記ここまで)
    264(追記) \item Set of constraints $C_R$ ($a\beta \leq b\alpha$ for all pairs) is real shadow of constraints $C$. (追記ここまで)
    265(追記) %\item If ($L,ドル$U$) are the number of (lower,upper) bounds on eliminated variable, the real shadow introduces $L.U$ new equations. (追記ここまで)
    266(追記) \item We at least know: $\lnot \operatorname{hasIntSol}(C_R) \implies \lnot \operatorname{hasIntSol}(C)$ (追記ここまで)
    267(追記) \end{itemize} (追記ここまで)
    268(追記) $\operatorname{hasIntSol}(C_R) \land \lnot \operatorname{hasIntSol}(C) \implies (\lnot \exists x: a\beta \leq abx \leq b\alpha)$ (追記ここまで)
    269(追記) \note{Using: (追記ここまで)
    270(追記) (追記ここまで)
    271(追記) $(A \land \lnot B) \implies C$ (追記ここまで)
    272(追記) (追記ここまで)
    273(追記) $\lnot (A \land \lnot B) \lor C$ (by definition) (追記ここまで)
    274(追記) (追記ここまで)
    275(追記) $(\lnot A \lor B) \lor C$ (De Morgan's Law) (追記ここまで)
    276(追記) (追記ここまで)
    277(追記) $(\lnot A \lor C) \lor B$ (Distributivity of Or) (追記ここまで)
    278(追記) (追記ここまで)
    279(追記) $\lnot (A \land \lnot C) \lor B$ (De Morgan's Law) (追記ここまで)
    280(追記) (追記ここまで)
    281(追記) $(A \land \lnot C) \implies B$ (by definition) (追記ここまで)
    282(追記) } (追記ここまで)
    283(追記) $\operatorname{hasIntSol}(C_R) \land (\exists x: a\beta \leq abx \leq b\alpha) \implies \operatorname{hasIntSol}(C)$ (追記ここまで)
    284(追記) \end{frame} (追記ここまで)
    285(追記) (追記ここまで)
    286(追記) \begin{frame}[fragile] (追記ここまで)
    287(追記) \frametitle{Integers} (追記ここまで)
    288(追記) \includegraphics[width=100mm]{Omega-Test-Number-Line.png} (追記ここまで)
    289(追記) (追記ここまで)
    290(追記) $\neg \exists x: a\beta \leq abx \leq b\alpha \implies b\alpha - a\beta \leq ab - a - b$ (追記ここまで)
    291(追記) (追記ここまで)
    292(追記) \note{Using: (追記ここまで)
    293(追記) (追記ここまで)
    294(追記) $A \implies B$ (追記ここまで)
    295(追記) (追記ここまで)
    296(追記) $\lnot A \lor B$ (by definition) (追記ここまで)
    297(追記) (追記ここまで)
    298(追記) $\lnot A \lor \lnot \lnot B$ ($\lnot\lnot A = A$) (追記ここまで)
    299(追記) (追記ここまで)
    300(追記) $\lnot B \implies \lnot A$ (by definition) (追記ここまで)
    301(追記) } (追記ここまで)
    302(追記) (追記ここまで)
    303(追記) $b\alpha - a\beta > ab - a - b \implies \exists x: a\beta \leq abx \leq b\alpha$ (追記ここまで)
    304(追記) (追記ここまで)
    305(追記) $b\alpha - a\beta \geq ab - a - b + 1 \implies \ldots$ (追記ここまで)
    306(追記) (追記ここまで)
    307(追記) $b\alpha - a\beta \geq (a - 1)(b - 1) \implies \ldots$ (追記ここまで)
    308(追記) (追記ここまで)
    309(追記) Term this constraint $C_D$. $\operatorname{hasIntSol}(C_D) \implies \exists x: a\beta \leq abx \leq b\alpha$. (追記ここまで)
    310(追記) Therefore $\operatorname{hasIntSol}(C_R) \land \operatorname{hasIntSol}(C_D) \implies \operatorname{hasIntSol}(C)$ (追記ここまで)
    311(追記) (追記ここまで)
    312(追記) N.B. $a = 1 \vee b = 1 \implies b\alpha - a\beta \geq 0 \implies b\alpha \geq a\beta$ (追記ここまで)
    313(追記) (追記ここまで)
    314(追記) (追記ここまで)
    213315\end{frame}
    214316
    268370% TODO wrap my head around this!
    269371
    372(追記) %TODO be careful - if a and b are identical, you still can't cancel them! (追記ここまで)
    373(追記) (追記ここまで)
    374(追記) \begin{frame}[fragile] (追記ここまで)
    375(追記) \frametitle{Real and Dark Shadows} (追記ここまで)
    376(追記) %True, but irrelevant here: (追記ここまで)
    377(追記) %$\forall X. \operatorname{hasIntSol}(X) \implies \operatorname{hasRealSol}(X)$ (追記ここまで)
    378(追記) (追記ここまで)
    379(追記) $C_R$ is the real shadow of $C,ドル $X_D$ is the dark shadow of $C$ (追記ここまで)
    380(追記) (追記ここまで)
    381(追記) $\forall X. (C_R = C_D) \implies (\operatorname{hasIntSol}(C) \iff \operatorname{hasIntSol}(C_R))$ (追記ここまで)
    382(追記) (追記ここまで)
    383(追記) $\forall X. \lnot \operatorname{hasIntSol}(C_R) \implies \lnot \operatorname{hasIntSol}(C)$ (追記ここまで)
    384(追記) $\operatorname{hasIntSol}(C_R) \land \operatorname{hasIntSol}(C_D) \implies \operatorname{hasIntSol}(C)$ (追記ここまで)
    385(追記) (追記ここまで)
    386(追記) If $\operatorname{hasIntSol}(X_R) \wedge \neg \operatorname{hasIntSol}(X_D) \wedge (X_R \neq X_D),ドル we can't yet tell the value of $\operatorname{hasIntSol}(X$ (追記ここまで)
    387(追記) (追記ここまで)
    388(追記) \end{frame} (追記ここまで)
    389(追記) (追記ここまで)
    270390
    271391\section{Tricky Parts}
Note: See TracChangeset for help on using the changeset viewer.

AltStyle によって変換されたページ (->オリジナル) /