Changeset 111
- Timestamp:
- Dec 21, 2007, 11:34:09 PM (18 years ago)
- Author:
- neil.c.c.brown
- Message:
-
Added more TODO notes to the slides, and added another graph
- Location:
- docs/trunk/omega-test-slides
- Files:
-
- 2 edited
- 1 copied
- equality-2.gnu (modified) (1 diff)
- equality-3.gnu (copied) (copied from docs/trunk/omega-test-slides/equality-2.gnu ) (3 diffs)
- omega-test.tex (modified) (5 diffs)
Legend:
- Unmodified
- Added
- Removed
-
docs/trunk/omega-test-slides/equality-2.gnu
r110 r111 2 2 3 3 set title "Two Equations" 4 (削除) (削除ここまで)5 (削除) set pm3d depthorder (削除ここまで)6 4 7 5 #3x - y + z = 30 -
docs/trunk/omega-test-slides/equality-3.gnu
r110 r111 2 2 3 3 set title "Two Equations" 4 (削除) (削除ここまで)5 (削除) set pm3d depthorder (削除ここまで)6 4 7 5 #3x - y + z = 30 … … 33 31 34 32 set style fill transparent solid 0.5 noborder 33 (追記) (追記ここまで) 34 (追記) #4x + y + 6z = 110 (追記ここまで) 35 (追記) #u = x (追記ここまで) 36 (追記) #v = y (追記ここまで) 37 (追記) #z = (110 - 4u - v) / 6 (追記ここまで) 38 (追記) set palette defined (0 'blue',1 'blue') (追記ここまで) 39 (追記) splot u, v, (110 - 4*u - v) / 6 with pm3d (追記ここまで) 40 (追記) (追記ここまで) 35 41 set palette defined (0 'red',1 'red') 36 42 splot (30 + u - v)/3, u, v with pm3d … … 46 52 set style fill transparent solid 0 noborder 47 53 48 splot 0,0,0 title "{/*1.5 x + y + 3z = 50}" with lines, 0,0,0 title "{/*1.5 3x - y + z = 30}" with lines (削除) (削除ここまで)54 splot 0,0,0 title "{/*1.5 x + y + 3z = 50}" with lines, 0,0,0 title "{/*1.5 3x - y + z = 30}" with lines(追記) , 0,0,0 title "{/*1.5 4x + y + 6z = 110}" with lines (追記ここまで) -
docs/trunk/omega-test-slides/omega-test.tex
r109 r111 76 76 %TODO mention that we want integer solutions 77 77 78 (追記) %TODO point out that the equation must be linear (追記ここまで) 79 (追記) (追記ここまで) 78 80 \section{Terms, etc} 79 81 … … 134 136 \begin{frame}[fragile] 135 137 \biggraph{Inconsistent Equality}{equality-1-par} 138 (追記) (追記ここまで) 136 139 Rule: Identical coeffs but different constant $\implies$ unsolveable. 137 140 \end{frame} … … 143 146 \end{frame} 144 147 145 %TODO Show a graph with three planes intersecting in a line: 148 %Show a graph with three planes intersecting in a line: 149 150 \begin{frame}[fragile] 151 \fullframegraph{Equalities}{equality-3} 152 \end{frame} 146 153 147 154 %This is the maths of the three planes intersecting in a line: … … 149 156 \begin{frame}[fragile] 150 157 \frametitle{The Maths} 151 3x - y + z = 30 152 x + y + 3z = 50 158 $\begin{array}{rrcr} 159 3x - y + & z & = & 30 \\ 160 x + y + & 3z & = & 50 \\ 153 161 %goes to: 4x + 4z = 80, x + z = 20, z = 20 - x. y = 3x + z - 30 154 162 % Two points this line goes through are: (10,10,10) + (11,12,9) 155 163 % Therefore (10,10,10) + t(1,2,-1), or (5,0,15) + t(1,2,-1) 156 % Another random point: (25,10,0). 157 \end{frame} 164 % Another random point: (25,10,0), therefore another vector in the plane 165 % is (3,0,-2) 166 167 %Therefore another plane that contains this line satisfies: 168 % 5 + t + 3u = x 169 % 2t = y 170 % 15 - t - 2u = z 171 % gives: 172 % t = y/2, u = x + z - 20 173 % So the plane is: 174 % 5 + y/2 + 3x + 3z - 60 = x 175 % 4x + y + 6z = 110 176 4x + y + & 6z & = & 110 177 \end{array}$ 178 179 Subst. $y = 3x + z - 30$ into latter two: 180 181 $\begin{array}{rrcr} 182 4x + & 4z & = & 80 \\ 183 7x + & 7z & = & 140 184 \end{array}$ 185 186 After normalisation, equations are identical $\therefore$ redundant. 187 188 \end{frame} 189 190 %TODO show what happens when you don't yet have a unit coefficient 158 191 159 192 \section{Inequalities} … … 161 194 %TODO probably best shown in two dimensions 162 195 196 (追記) \section{Tricky Parts} (追記ここまで) 197 (追記) (追記ここまで) 198 (追記) %TODO mention picking out i*j as a variable if possible (追記ここまで) 199 (追記) (追記ここまで) 200 (追記) \section{Code to Equations} (追記ここまで) 201 (追記) (追記ここまで) 163 202 164 203 \end{document}
Note:
See TracChangeset
for help on using the changeset viewer.