- Timestamp:
- Dec 21, 2007, 7:23:25 PM (18 years ago)
- Author:
- neil.c.c.brown
- Message:
-
Fiddled with the slides and graphs; still in a very messy state
- Location:
- docs/trunk/omega-test-slides
- Files:
-
- 2 added
- 2 edited
- equality-1-par.gnu (added)
- equality-1.gnu (added)
- equality-2.gnu (modified) (1 diff)
- omega-test.tex (modified) (3 diffs)
Legend:
- Unmodified
- Added
- Removed
-
docs/trunk/omega-test-slides/equality-2.gnu
r106 r107 3 3 set title "Two Equations" 4 4 5 (削除) #2x + 3y - z = 4 (削除ここまで)6 (削除) #splot (2*x + 3*y) - 4 title "{/*1.5 2x + 3y - z = 4}" ls 1 (削除ここまで)7 (削除) (削除ここまで)8 5 #3x - y + z = 30 9 6 #x + y + 3z = 50 -
docs/trunk/omega-test-slides/omega-test.tex
r106 r107 5 5 6 6 \newcommand{\fullframegraph}[2]{\frametitle{#1}\graph{#2}} 7 (追記) \newcommand{\biggraph}[2]{\frametitle{#1}\graph{#2}} (追記ここまで) 7 8 8 9 %{{{ header … … 48 49 %}}} 49 50 50 \section{Introduction} 51 \section{The Typical Problem} 52 53 \occamsettings 54 55 %TODO decide whether to have the actual graphical stuff the same as the code problem, 56 % or keep them divorced. 57 58 \begin{frame} 59 \frametitle{Parallel Usage} 60 Without knowing the value of \lstinline|p|,\lstinline|q| or \lstinline|r| at run-time, 61 can we determine if this is safe: 62 \begin{lstlisting} 63 PAR 64 a[p] := 7 65 a[p + q] := 8 66 a[p - q + r] := 9 67 \end{lstlisting} 68 \end{frame} 69 70 %TODO remember to point out that each pair is a different problem 71 72 %TODO point out no solution = safe, solution = unsafe 73 74 %TODO mention occam STOPping on integer overflow and array out of bounds being very useful 75 76 %TODO mention that we want integer solutions 77 78 \section{Terms, etc} 79 80 \begin{frame}[fragile] 81 \frametitle{Defining Terms} 82 \begin{itemize} 83 \item General form of equations for $n$ variables ($x_1 \cdots x_n$): 84 \begin{itemize} 85 \item Equality: $\displaystyle\sum_{i=0}^n a_i x_i = 0$ 86 \item Inequality: $\displaystyle\sum_{i=0}^n a_i x_i >= 0$ 87 \item $x_0 = 1, \therefore a_0$ is the constant term 88 \end{itemize} 89 \item For readability, equations here will usually be written in the form: 90 \begin{itemize} 91 \item $ax + by + cz = d$ 92 \end{itemize} 93 \item Equations are kept normalised (GCD of coefficients $a_1 \cdots a_n$ is 1) 94 \end{itemize} 95 \end{frame} 96 97 \section{Equalities} 98 99 \begin{frame} 100 \frametitle{Equalities} 101 \begin{itemize} 102 \item Each additional equality after the first can do one (and only one) of: 103 \begin{itemize} 104 \item Nothing (redundant equation) 105 \item Disprove problem (inconsistent equation) 106 \item Remove one variable (``useful'' equation) 107 \end{itemize} 108 \end{itemize} 109 \end{frame} 110 111 %TODO mention integer grid, and how this relates to the equations 112 113 \begin{frame} 114 \frametitle{Equalities without integer solutions} 115 \begin{itemize} 116 \item The equation 2ドルx = 2y + 5$ has no integer solutions 117 \begin{itemize} 118 \item Rule: if the GCD of the variable coeffs does not divide the constant, there 119 is no integer solution. 120 \end{itemize} 121 \end{itemize} 122 123 %Show a graph with one plane: 124 125 \begin{frame}[fragile] 126 \fullframegraph{First Equality}{equality-1} 127 \end{frame} 128 129 %TODO show a graph with two planes in the same place (if that's even possible?) 130 131 %Show a graph with two parallel planes: 132 133 \begin{frame}[fragile] 134 \biggraph{Inconsistent Equality}{equality-1-par} 135 Rule: Identical coeffs but different constant $\implies$ unsolveable. 136 \end{frame} 137 138 %Show a graph with two planes intersecting in a line: 51 139 52 140 \begin{frame}[fragile] … … 54 142 \end{frame} 55 143 144 (追記) %TODO Show a graph with three planes intersecting in a line: (追記ここまで) 145 (追記) (追記ここまで) 146 (追記) %This is the maths of the three planes intersecting in a line: (追記ここまで) 147 (追記) (追記ここまで) 148 (追記) \begin{frame}[fragile] (追記ここまで) 149 (追記) \frametitle{The Maths} (追記ここまで) 150 (追記) 3x - y + z = 30 (追記ここまで) 151 (追記) x + y + 3z = 50 (追記ここまで) 152 (追記) %goes to: 4x + 4z = 80, x + z = 20, z = 20 - x. y = 3x + z - 30 (追記ここまで) 153 (追記) % Two points this line goes through are: (10,10,10) + (11,12,9) (追記ここまで) 154 (追記) % Another random point: (25,10,0). (追記ここまで) 155 (追記) (追記ここまで) 156 (追記) (追記ここまで) 157 (追記) \section{Inequalities} (追記ここまで) 158 (追記) (追記ここまで) 159 (追記) %TODO probably best shown in two dimensions (追記ここまで) 160 (追記) (追記ここまで) 161 (追記) (追記ここまで) 56 162 \end{document} 163 (追記) (追記ここまで)
Note:
See TracChangeset
for help on using the changeset viewer.