Feeds:
Posts
Comments

PEN Global

June 23, 2009 by compactorange

Anyone who wants to contribute the PEN Global, the translation work of Problems in Elementary Number Theory 2 [ 2009 ] No. 1 , please submit your translation to Yimin Ge at \text{\small yimin.ge@gmx.at} together with your LaTeX file, its compiled PDF file and fonts file.

You have to use the TeX file available here . Download gPENv02n1eng.tex. The deadline for your submission is 15th, July..

Before you contact Yimin Ge, please have a look at the PEN Global page at https://projectpen.wordpress.com/global .

Notice: We’ve already find translators: in Vietnamese, Greek, Spanish, Bangla, Bosnian, Chinese, Croatian, Serbian [Latin] and Serbian [Cyrillic]

Posted in Notice | Leave a Comment »

As you know, Problems in Elementary Number Theory 2 [ 2009 ] No. 1 is NOW online. The Editors-in-Chief of the next issue are

Daniel Kohen (Argentina)
Cosmin Pohoata (Romania)
Harun Šiljak (Bosnia and Herzegovina)
Peter Vandendriessche (Belgium)

Anyone who wants to be one of the Editors-in-Chief of the fourth and fifth issue of Problems in Elementary Number Theory (2010), APPLY NOW.

Please, send an email to us at pen@problem-solving.be with your brief C.V.

You need to know basic LaTeX skills and of course you have to be fluent with Olympiad-style problems from Elementary number theory.

We are planning to recruit two or three Editors-in-Chief for Problems in Elementary Number Theory 2010. The deadline for application is 31th, July.

from Hojoo Lee (the founder of project PEN)

Posted in Notice | 1 Comment »

Is now available here !

This weblication is written by PEN team and contributors:

Alexander Remorov (Canada),
Darij Grinberg (Germany),
Harun Siljak (Bosnia and Herzegovina),
Marin Misur (Croatia).

We also need to thank two Editors-in-Chief:

Daniel Kohen (Argentina) and Cosmin Pohoata (Romania).

Here goes the table of contents:

1 Problems 1
2 Articles 3
2.1 Three Ways to Attack a Functional Equation . . . . . . . . . . . . . . . . . . . . . 3
2.2 A Generalization of an Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Minimum prime divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Di erent Approaches to an Intuitive Problem . . . . . . . . . . . . . . . . . . . . . 15
2.5 Exponential Congruence Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Using Quadratic Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 A Hidden Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Fractions Mod p and Wolstenholme’s theorem . . . . . . . . . . . . . . . . . . . . . 29
2.9 A binomial sum divisible by primes . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Sequences of Consecutive Integers . . . . . .
1 Problems 1
2 Articles 3
2.1 Three Ways to Attack a Functional Equation . . . . . . . . . . . . . . . . . . . . . 3
2.2 A Generalization of an Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Minimum prime divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Di erent Approaches to an Intuitive Problem . . . . . . . . . . . . . . . . . . . . . 15
2.5 Exponential Congruence Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Using Quadratic Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 A Hidden Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Fractions Mod p and Wolstenholme’s theorem . . . . . . . . . . . . . . . . . . . . . 29
2.9 A binomial sum divisible by primes . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Sequences of Consecutive Integers . . . . . .

Posted in Notice | 3 Comments »

Older Posts »

Design a site like this with WordPress.com
Get started

AltStyle によって変換されたページ (->オリジナル) /