I am currently a Senior Staff Research Scientist and Manager at Google Cloud AI Research, driving innovation in machine learning and its real-world applications across diverse tasks and modalities.
Previously, I was at Apple where I published the Technology Development Group's inaugural research paper at CVPR and launched several key features in ARKit (now Vision Pro). I was also in the AI Research Group at Magic Leap with Andrew Rabinovich. I completed my PhD in deep learning, advised by Professors Zhuowen Tu and Pamela Cosman at UC San Diego, and mentored by Simon Osindero during my summer research. I am a recipient of the Test-of-Time Award for Deep Supervision at AISTATS 2025 and the Google Spotlight Award for Distilling Step-by-Step! at ACL 2023.
We are assembling a world-class team to explore the intersection of large AI models and high-value enterprise AI challenges. Contact me to learn more.
Selected Publications
ReasoningBank: Scaling Agent Self-Evolving with Reasoning Memory
Siru Ouyang, Jun Yan, I-Hung Hsu, Yanfei Chen, Ke Jiang, Zifeng Wang, Rujun Han, Long T. Le, Samira Daruki, Xiangru Tang, Vishy Tirumalashetty, George Lee, Mahsan Rofouei, Hangfei Lin, Jiawei Han, Chen-Yu Lee, Tomas PfisterarXiv 2025 / Paper / featured by VentureBeat
Deep Researcher with Test-Time Diffusion
Rujun Han, Yanfei Chen, Zoey CuiZhu, Lesly Miculicich, Guan Sun, Yuanjun Bi, Weiming Wen, Hui Wan, Chunfeng Wen, Solène Maître, George Lee, Vishy Tirumalashetty, Emily Xue, Zizhao Zhang, Salem Haykal, Burak Gokturk, Tomas Pfister, Chen-Yu LeearXiv 2025 / Paper / Google AI Blog / featured by VentureBeat
Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities
Gemini Team, GooglearXiv 2025 / Paper
Heterogeneous Swarms: Jointly Optimizing Model Roles and Weights for Multi-LLM Systems
Shangbin Feng, Zifeng Wang, Palash Goyal, Yike Wang, Weijia Shi, Huang Xia, Hamid Palangi, Luke Zettlemoyer, Yulia Tsvetkov, Chen-Yu Lee, Tomas PfisterNeurIPS 2025 / Paper
Towards Compute-Optimal Many-Shot In-Context Learning
Shahriar Golchin, Yanfei Chen, Rujun Han, Manan Gandhi, Tianli Yu, Swaroop Mishra, Mihai Surdeanu, Rishabh Agarwal, Chen-Yu Lee, Tomas PfisterCOLM 2025 / Paper
In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents
Zhen Tan, Jun Yan, I-Hung Hsu, Rujun Han, Zifeng Wang, Long T. Le, Yiwen Song, Yanfei Chen, Hamid Palangi, George Lee, Anand Iyer, Tianlong Chen, Huan Liu, Chen-Yu Lee, Tomas PfisterACL 2025 / Paper
Model Swarms: Collaborative Search to Adapt LLM Experts via Swarm Intelligence
Shangbin Feng, Zifeng Wang, Yike Wang, Sayna Ebrahimi, Hamid Palangi, Lesly Miculicich, Achin Kulshrestha, Nathalie Rauschmayr, Yejin Choi, Yulia Tsvetkov, Chen-Yu Lee, Tomas PfisterICML 2025 / Paper
Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling
Wenda Xu, Rujun Han, Zifeng Wang, Long T. Le, Dhruv Madeka, Lei Li, William Yang Wang, Rishabh Agarwal, Chen-Yu Lee, Tomas PfisterICLR 2025 / Paper / Code
Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting
Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven Zheng, Swaroop Mishra, Vincent Perot, Yuwei Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang, Chen-Yu Lee, Tomas PfisterICLR 2025 / Paper / Google AI Blog
Reverse Thinking Makes LLMs Stronger Reasoners
Justin Chih-Yao Chen, Zifeng Wang, Hamid Palangi, Rujun Han, Sayna Ebrahimi, Long Le, Vincent Perot, Swaroop Mishra, Mohit Bansal, Chen-Yu Lee, Tomas PfisterNAACL 2025 / Paper / Code
Where is the answer? An empirical study of positional bias for parametric knowledge extraction in language model
Kuniaki Saito, Chen-Yu Lee, Kihyuk Sohn, Yoshitaka UshikuNAACL 2025 / Paper
(Oral Presentation)
TableRAG: Million-Token Tabular Reasoning with Large Language Models
Si-An Chen, Lesly Miculicich, Julian Martin Eisenschlos, Zifeng Wang, Zilong Wang, Yanfei Chen, Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, Tomas PfisterNeurIPS 2024 / Paper / Code
Re-Invoke: Tool Invocation Rewriting for Zero-Shot Tool Retrieval
Yanfei Chen, Jinsung Yoon, Devendra Singh Sachan, Qingze Wang, Vincent Cohen-Addad, Mohammadhossein Bateni, Chen-Yu Lee, Tomas PfisterEMNLP 2024 / Paper (Findings) / Google AI Blog
CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation
I-Hung Hsu, Zifeng Wang, Long T. Le, Lesly Miculicich, Nanyun Peng, Chen-Yu Lee, Tomas PfisterACL 2024 / Paper (Findings)
Found in the Middle: Calibrating Positional Attention Bias Improves Long Context Utilization
Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang Li, Zifeng Wang, Long Le, Abhishek Kumar, James R. Glass, Alexander Ratner, Chen-Yu Lee, Ranjay Krishna, Tomas PfisterACL 2024 / Paper (Findings)
LMDX: Language Model-based Document Information Extraction and Localization
Vincent Perot, Kai Kang, Florian Luisier, Guolong Su, Xiaoyu Sun, Ramya Sree Boppana, Zilong Wang, Zifeng Wang, Jiaqi Mu, Hao Zhang, Chen-Yu Lee, Nan HuaACL 2024 / Paper (Findings)
CodecLM: Aligning Language Models with Tailored Synthetic Data
Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T. Le, Jin Miao, Zizhao Zhang, Chen-Yu Lee, Tomas PfisterNAACL 2024 / Paper (Findings) / Google AI Blog
Chain-of-Table: Evolving Tables in the Reasoning Chain for Table Understanding
Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, Tomas PfisterICLR 2024 / Paper / Code / Google AI Blog
Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, Ranjay Krishna, Chen-Yu Lee, Tomas PfisterACL 2023 / Paper (Findings) / Code / Google AI Blog
(Google ACL 2023 Spotlight)
QueryForm: A Simple Zero-shot Form Entity Query Framework
Zifeng Wang, Zizhao Zhang, Jacob Devlin, Chen-Yu Lee, Guolong Su, Hao Zhang, Jennifer Dy, Vincent Perot, Tomas PfisterACL 2023 / Paper (Findings)
FormNetV2: Multimodal Graph Contrastive Learning for Form Document Information Extraction
Chen-Yu Lee, Chun-Liang Li, Hao Zhang, Timothy Dozat, Vincent Perot, Guolong Su, Xiang Zhang, Kihyuk Sohn, Nikolai Glushnev, Renshen Wang, Joshua Ainslie, Shangbang Long, Siyang Qin, Yasuhisa Fujii, Nan Hua, Tomas PfisterACL 2023 / Paper
VRDU: A Benchmark for Visually-rich Document Understanding
Zilong Wang, Yichao Zhou, Wei Wei, Chen-Yu Lee, Sandeep TataKDD 2023 / Paper / Code / Dataset
Multimodal Prompting with Missing Modalities for Visual Recognition
Yi-Lun Lee, Yi-Hsuan Tsai, Wei-Chen Chiu, Chen-Yu LeeCVPR 2023 / Paper / Code
Pic2Word: Mapping Pictures to Words for Zero-shot Composed Image Retrieval
Kuniaki Saito, Kihyuk Sohn, Xiang Zhang, Chun-Liang Li, Chen-Yu Lee, Kate Saenko, Tomas PfisterCVPR 2023 / Paper / Code / Google AI Blog
Prefix Conditioning Unifies Language and Label Supervision
Kuniaki Saito, Kihyuk Sohn, Xiang Zhang, Chun-Liang Li, Chen-Yu Lee, Kate Saenko, Tomas PfisterCVPR 2023 / Paper / Google AI Blog
DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning
Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, Tomas PfisterECCV 2022 / Paper / Code
FormNet: Structural Encoding beyond Sequential Modeling in Form Document Information Extraction
Chen-Yu Lee, Chun-Liang Li, Timothy Dozat, Vincent Perot, Guolong Su, Nan Hua, Joshua Ainslie, Renshen Wang, Yasuhisa Fujii, Tomas PfisterACL 2022 / Paper / Google AI Blog
Learning to Prompt for Continual Learning
Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, Tomas PfisterCVPR 2022 / Paper / Code / Google AI Blog
ROPE: Reading Order Equivariant Positional Encoding for Graph-based Document Information Extraction
Chen-Yu Lee, Chun-Liang Li, Chu Wang, Renshen Wang, Yasuhisa Fujii, Siyang Qin, Ashok Popat, Tomas PfisterACL 2021 / Paper
(Oral Presentation)
Learning to Branch for Multi-Task Learning
Pengsheng Guo, Chen-Yu Lee, Daniel UlbrichtICML 2020 / Paper
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, Daniel UlbrichtCVPR 2019 / Paper / Code / ML Journal
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks
Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, Andrew RabinovichICML 2018 / Paper
RoomNet: End-to-End Room Layout Estimation
Chen-Yu Lee, Vijay Badrinarayanan, Tomasz Malisiewicz, Andrew RabinovichICCV 2017 / Paper
Recursive Recurrent Nets with Attention Modeling for OCR in the Wild
Chen-Yu Lee and Simon OsinderoCVPR 2016 / Paper
Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree
Chen-Yu Lee, Patrick Gallagher, Zhuowen TuTPAMI 2017 / Paper
AISTATS 2016 / Paper / Code
Deeply-Supervised Nets
Chen-Yu Lee*, Saining Xie*, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu (*equal contribution)AISTATS 2015 / Paper / Code (
Test of Time Award
@ AISTATS 2025, slides)NIPS 2014 DL Workshop / Paper
(Oral Presentation)
Region-based Discriminative Feature Pooling for Scene Text Recognition
Chen-Yu Lee, Anurag Bhardwaj, Wei Di, Vignesh Jagadeesh, Robinson PiramuthuCVPR 2014 / Paper
Pre-Prints
When One LLM Drools, Multi-LLM Collaboration Rules
Shangbin Feng, Wenxuan Ding, Alisa Liu, Zifeng Wang, Weijia Shi, Yike Wang, Zejiang Shen, Xiaochuang Han, Hunter Lang, Chen-Yu Lee, Tomas Pfister, Yejin Choi, Yulia TsvetkovarXiv 2025 / Paper
Universal Model Routing for Efficient LLM Inference
Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Jeevesh Juneja, Zifeng Wang, Chen-Yu Lee, Pradeep Shenoy, Rina Panigrahy, Aditya Krishna Menon, Sanjiv KumararXiv 2025 / Paper
Tool Documentation Enables Zero-Shot Tool-Usage with Large Language Models
Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Krishna, Tomas PfisterarXiv 2023 / Paper
A Simple Semi-Supervised Learning Framework for Object Detection
Kihyuk Sohn*, Zizhao Zhang*, Chun-Liang Li, Han Zhang, Chen-Yu Lee, Tomas Pfister (*equal contribution)arXiv 2020 / Paper / Code
Awards
Test-of-Time Award at AISTATS 2025
Oral at NAACL 2025
Google Spotlight Award at ACL 2023
Oral at ACL 2021
Oral at NIPS 2014 DL workshop
Oral at NAACL 2025
Google Spotlight Award at ACL 2023
Oral at ACL 2021
Oral at NIPS 2014 DL workshop
Academic Services
Reviewer: NeurIPS, ICML, ICLR, ACL, NAACL, EMNLP, COLM, CVPR, ICCV, ECCV, BMVC, PAMI, IJCV, JMLR
Outstanding Reviewer: CVPR 2019, BMVC 2019
Organizer / PC: SIGKDD 2025 AI4SupplyChain, CVPR 2020 CV4AR/VR