[フレーム]

Course Info

Topics
Learning Resource Types
Problem Sets
Exams
Lecture Notes

Download Course
15.093J | Fall 2009 | Graduate

Optimization Methods

Lecture Notes

LEC # TOPICS LECTURE NOTES
1 Applications of linear optimization (PDF)
2 Geometry of linear optimization (PDF)
3 Simplex method I (PDF)
4 Simplex method II (PDF)
5 Duality theory I (PDF)
6 Duality theory II (PDF)
7 Sensitivity analysis (PDF)
8 Robust optimization (PDF)
9 Large scale optimization (PDF)
10

Network flows I

Courtesy of Prof. Andreas Schulz. Used with permission.

(PDF)
11

Network flows II

Courtesy of Prof. Andreas Schulz. Used with permission.

(PDF)
12 Applications of discrete optimization (PDF)
13 Branch and bound and cutting planes (PDF)
14 Lagrangean methods (PDF)
15 Heuristics and approximation algorithms (PDF)
16 Dynamic programming (PDF)
17 Applications of nonlinear optimization (PDF)
18 Optimality conditions and gradient methods (PDF)
19 Line searches and Newton’s method (PDF)
20 Conjugate gradient methods (PDF)
21 Affine scaling algorithm (PDF)
22 Interior point methods (PDF)
23 Semidefinite optimization I (PDF)
24 Semidefinite optimization II (PDF)

Course Info

Learning Resource Types
Problem Sets
Exams
Lecture Notes

MIT Open Learning
Over 2,500 courses & materials
Freely sharing knowledge with learners and educators around the world. Learn more
© 2001–2025 Massachusetts Institute of Technology
Proud member of: Open Education Global
© 2001–2025 Massachusetts Institute of Technology

AltStyle によって変換されたページ (->オリジナル) /