Quadratic Integral
To compute an integral of the form
| [画像: int(dx)/(a+bx+cx^2), ] |
(1)
|
complete the square in the denominator to obtain
Let u=x+b/2c. Then define
where
| q=4ac-b^2 |
(4)
|
is the negative of the polynomial discriminant. If q<0, then
| [画像: A=1/(2c)sqrt(-q). ] |
(5)
|
Now use partial fraction decomposition,
| [画像: ((A_1)/(u+A)+(A_2)/(u-A))=(A_1(u-A)+A_2(u+A))/(u^2-A^2) =((A_1+A_2)u+A(A_2-A_1))/(u^2-A^2), ] |
(7)
|
so A_2+A_1=0=>A_2=-A_1 and A(A_2-A_1)=-2AA_1=1=>A_1=-1/(2A). Plugging these in,
for q<0. Note that this integral is also tabulated in Gradshteyn and Ryzhik (2000, equation 2.172), where it is given with a sign flipped.
See also
QuadraticExplore with Wolfram|Alpha
WolframAlpha
More things to try:
References
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.Referenced on Wolfram|Alpha
Quadratic IntegralCite this as:
Weisstein, Eric W. "Quadratic Integral." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/QuadraticIntegral.html